Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Shake and stir to make granular materials change phases


In an experiment originally planned for the International Space Station, physicists at Duke University have devised a controlled, measurable method to make a container of granules -- in this case plastic beads -- "freeze" into the equivalent of a solid-state crystal, or "melt" into the equivalent of a fluid, by alternating the rates that the beads are stirred or shaken.

Results from these experiments also apply to other types of "granular materials," a term scientists use to describe aggregations of solid objects that, according to the circumstances, flow like liquids and gases or clump like solids, said Duke physics professor Robert Behringer, who has spent much of his career studying them. The research was funded by NASA.

"Our technique allows us to both control and measure the effect of different ways to energize a granular material, which has not been possible before," said Behringer, who with his postdoctoral researcher Karen Daniels described the work in a paper published April 29, 2005, in the journal Physical Review Letters.

"What is rather striking about this is that vibration doesn’t make a granular system move as expected towards a more fluid-like state, as it would in conventional matter," said Behringer in an interview. "Instead, it has the reverse effect: making it move towards a solid-like crystalline state."

This surprise could have implications for real-world situations involving granular materials, such as predicting the stability of a dirt embankment, or "unjamming" a hopper of coal or gravel, Behringer added.

Daniels, who will soon join the faculty at North Carolina State University, worked with Behringer to build a round adjustable chamber with a transparent Plexiglas wall. Small plastic beads inside the chamber are stirred -- physicists call it "shearing" -- by a motor mounted at the top. Meanwhile, an electromagnetic vibrator mounted at the bottom can shake the beads.

"The motivation for this experiment was really to understand how granular materials undergo what’s called a jamming transition," Behringer said. That transition, he explained, occurs as particles are pushed so close together that they interlock and become immobile. The Earth’s gravity does this all the time, for instance, when blowing or sifting sand grains are pulled down by gravity until they become immobile solid soil.

"If there isn’t a sufficiently large shear, solid-like or jammed granular material will not move," he said. "It has been a major focus trying to understand how to characterize changes from that solid-like state to one where the grains can flow."

Instead of simulating a suspended-state condition by simply vibrating the beads, the Duke researchers originally planned to completely free the beads from gravity’s pull with an experiment aboard the International Space Station. "We wanted to get around the fact that the Earth compacts everything down," he said. But those research plans ended when NASA redirected its priorities.

Demonstrating their substitute Earth-bound experiment, Daniels first showed how stirring the mixture in the container made the top band of beads move and separate into increasingly disordered conglomerations.

"We thought randomly vibrating them up and down would further break those up," she said. "We proved that to be quite wrong."

Instead, Daniels showed how vibrations unexpectedly made the moving band at the top become more ordered, with the beads increasingly assuming the regular spatial symmetries of crystals.

"As I shake it harder, everything freezes up," she said.

By adjusting the rate of stirring and the rate of vibrating, Behringer said their system can predictably emulate "phase transitions" for granular materials that resemble what happens when liquids freeze into solids or crystalline solids melt into a liquid.

"If you shake at a given level and then start providing more shear, you’ll go from a crystalline to a disordered state," he said. "But as you shake harder, it takes more shearing to make the system melt."

As a bonus feature, the experimenters can also induce pressure on the shaking and mixing beads by reducing the chamber’s height. "That allows us to move into regimes that have not been accessible before," he said.

Their method may be applicable beyond the laboratory to help resolve some "very common engineering problems," he said. "Suppose that you have an embankment and you want to understand its stability. If you push it past the point where it will start to avalanche, what would those dynamics be?"

For one thing, their surprising results suggest that the embankment may not necessarily behave as expected in an earthquake, he acknowledged. "You might think that vibrations would destabilize the bank, when in fact they could stabilize it."

Their finding might also call into question a common industrial method for loosening materials that have become jammed together inside hoppers. "In some cases devices are used that cause vibrations," he said. "That might not only be an ineffective technique. It might actually compact the material even more."

Monte Basgall | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>