Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shake and stir to make granular materials change phases

09.05.2005


In an experiment originally planned for the International Space Station, physicists at Duke University have devised a controlled, measurable method to make a container of granules -- in this case plastic beads -- "freeze" into the equivalent of a solid-state crystal, or "melt" into the equivalent of a fluid, by alternating the rates that the beads are stirred or shaken.



Results from these experiments also apply to other types of "granular materials," a term scientists use to describe aggregations of solid objects that, according to the circumstances, flow like liquids and gases or clump like solids, said Duke physics professor Robert Behringer, who has spent much of his career studying them. The research was funded by NASA.

"Our technique allows us to both control and measure the effect of different ways to energize a granular material, which has not been possible before," said Behringer, who with his postdoctoral researcher Karen Daniels described the work in a paper published April 29, 2005, in the journal Physical Review Letters.


"What is rather striking about this is that vibration doesn’t make a granular system move as expected towards a more fluid-like state, as it would in conventional matter," said Behringer in an interview. "Instead, it has the reverse effect: making it move towards a solid-like crystalline state."

This surprise could have implications for real-world situations involving granular materials, such as predicting the stability of a dirt embankment, or "unjamming" a hopper of coal or gravel, Behringer added.

Daniels, who will soon join the faculty at North Carolina State University, worked with Behringer to build a round adjustable chamber with a transparent Plexiglas wall. Small plastic beads inside the chamber are stirred -- physicists call it "shearing" -- by a motor mounted at the top. Meanwhile, an electromagnetic vibrator mounted at the bottom can shake the beads.

"The motivation for this experiment was really to understand how granular materials undergo what’s called a jamming transition," Behringer said. That transition, he explained, occurs as particles are pushed so close together that they interlock and become immobile. The Earth’s gravity does this all the time, for instance, when blowing or sifting sand grains are pulled down by gravity until they become immobile solid soil.

"If there isn’t a sufficiently large shear, solid-like or jammed granular material will not move," he said. "It has been a major focus trying to understand how to characterize changes from that solid-like state to one where the grains can flow."

Instead of simulating a suspended-state condition by simply vibrating the beads, the Duke researchers originally planned to completely free the beads from gravity’s pull with an experiment aboard the International Space Station. "We wanted to get around the fact that the Earth compacts everything down," he said. But those research plans ended when NASA redirected its priorities.

Demonstrating their substitute Earth-bound experiment, Daniels first showed how stirring the mixture in the container made the top band of beads move and separate into increasingly disordered conglomerations.

"We thought randomly vibrating them up and down would further break those up," she said. "We proved that to be quite wrong."

Instead, Daniels showed how vibrations unexpectedly made the moving band at the top become more ordered, with the beads increasingly assuming the regular spatial symmetries of crystals.

"As I shake it harder, everything freezes up," she said.

By adjusting the rate of stirring and the rate of vibrating, Behringer said their system can predictably emulate "phase transitions" for granular materials that resemble what happens when liquids freeze into solids or crystalline solids melt into a liquid.

"If you shake at a given level and then start providing more shear, you’ll go from a crystalline to a disordered state," he said. "But as you shake harder, it takes more shearing to make the system melt."

As a bonus feature, the experimenters can also induce pressure on the shaking and mixing beads by reducing the chamber’s height. "That allows us to move into regimes that have not been accessible before," he said.

Their method may be applicable beyond the laboratory to help resolve some "very common engineering problems," he said. "Suppose that you have an embankment and you want to understand its stability. If you push it past the point where it will start to avalanche, what would those dynamics be?"

For one thing, their surprising results suggest that the embankment may not necessarily behave as expected in an earthquake, he acknowledged. "You might think that vibrations would destabilize the bank, when in fact they could stabilize it."

Their finding might also call into question a common industrial method for loosening materials that have become jammed together inside hoppers. "In some cases devices are used that cause vibrations," he said. "That might not only be an ineffective technique. It might actually compact the material even more."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>