Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers confirm the first image of a planet outside of our solar system

03.05.2005


An international team of astronomers reports April 29 the confirmation of the discovery of a giant planet, approximately five times the mass of Jupiter, that is gravitationally bound to a young brown dwarf. This discovery puts an end to a yearlong discussion on the nature of this object, which started with the detection of a red object close to the brown dwarf.



In February and March of this year, the astronomers took new images of the young brown dwarf and its giant planet companion with the state-of-the-science NACO instrument on the European Southern Observatory’s (ESO) Very Large Telescope in northern Chile. The planet is near the southern constellation of Hydra and approximately 200 light years from Earth.

"Our new images show convincingly that this really is a planet, the first planet that has ever been imaged outside of our solar system," said Gael Chauvin, astronomer at the ESO and leader of the team of astronomers who conducted the study.


"The two objects -- the giant planet and the young brown dwarf -- are moving together; we have observed them for a year, and the new images essentially confirm our 2004 finding," said Benjamin Zuckerman, UCLA professor of physics and astronomy, member of NASA’s Astrobiology Institute, and a member of the team. "I’m more than 99 percent confident. This is also the first time that a planet outside of our solar system has been detected far from a star or brown dwarf -- nearly twice as far as the distance between Neptune and the sun."

Anne-Marie Lagrange, another member of the team from the Grenoble Observatory in France, said, "Our discovery represents a first step towards one of the most important goals of modern astrophysics: to characterize the physical structure and chemical composition of giant and, eventually, terrestrial-like planets."

Last September, the same team of astronomers reported a faint reddish speck of light in the close vicinity of a young brown dwarf. The feeble object, now called 2M1207b, is more than 100 times fainter than the brown dwarf, 2M1207A. The spectrum of 2M1207b presents a strong signature of water molecules, thereby confirming that it must be cold. Based on the infrared colors and the spectral data, evolutionary model calculations led to the conclusion that 2M1207b is a five-Jupiter-mass planet. Its mass can be estimated also by use of a different method of analysis, which focuses on the strength of its gravitational field; this technique suggests that the mass might be even less than that of five Jupiters.

At the time of its discovery in April 2004, it was impossible to prove that the faint source is not a background object (such as an unusual galaxy or a peculiar cool star with abnormal infrared colors), even though this appeared very unlikely. Observations with the Hubble Space Telescope, obtained in August 2004, corroborated the VLT/NACO observations, but were taken too soon after the NACO ones to demonstrate conclusively that the faint source is a planet.

The new observations show with high confidence that the two objects are moving together and hence are gravitationally bound.

The paper describing this research has been accepted for publication in Astronomy and Astrophysics, a premier journal in astronomy.

"Given the rather unusual properties of the 2M1207 system, the giant planet most probably did not form like the planets in our solar system," Chauvin said. "Instead it must have formed the same way our sun formed, by a one-step gravitational collapse of a cloud of gas and dust."

The same European/American team has had another paper just accepted for publication in Astronomy and Astrophysics. This paper reports the imaging discovery with the same VLT/NACO instrumentation of a lightweight companion to AB Pictoris, a young star located about 150 light years from Earth. The estimated mass of the companion is between 13 and 14 times the mass of Jupiter, which places the companion right on the borderline between massive planets and the lowest mass brown dwarfs.

"Remarkably, this companion is located very far from its host star -- about nine times farther from AB Pictoris than Neptune is from the sun," Zuckerman said. Nothing so far from its star has ever been seen in a planetary system before, he added.

Brown dwarfs, the missing link between gas giant planets like Jupiter and small, low?mass stars, are failed stars about the size of Jupiter, with a much larger mass -- but not quite large enough to become stars. Like the sun and Jupiter, they are composed mainly of hydrogen gas, perhaps with swirling cloud belts. Unlike the sun, they cannot fuse protons to helium nuclei as their primary internal energy source, and they emit almost no visible light.

Stuart Wolpert | EurekAlert!
Further information:
http://www.college.ucla.edu

More articles from Physics and Astronomy:

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>