Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Yes, it is the image of an exoplanet


Astronomers confirm the first image of a planet

An international team of astronomers reports today confirmation of the discovery of a giant planet, approximately five times the mass of Jupiter, that is gravitationally bound to a young brown dwarf. This puts an end to a year long discussion on the nature of this object, which started with the detection of a red object close to the brown dwarf.

In February and March of this year, the astronomers took new images of the young brown dwarf and its giant planet companion with the state-of-the-art NACO instrument on ESO’s Very Large Telescope in northern Chile. The planet is near the southern constellation of Hydra and approximately 200 light years from Earth.

"Our new images show convincingly that this really is a planet, the first planet that has ever been imaged outside of our solar system," tells Gael Chauvin, astronomer at ESO and leader of the team of astronomers who conducted the study.

"The two objects - the giant planet and the young brown dwarf - are moving together; we have observed them for a year, and the new images essentially confirm our 2004 finding," says Benjamin Zuckerman, UCLA professor of physics and astronomy, member of NASA’s Astrobiology Institute, and a member of the team. "I’m more than 99 percent confident." The separation between the planet and the brown dwarf is 55 times the separation of the Earth and Sun.

Anne-Marie Lagrange, another member of the team from the Grenoble Observatory in France, looks towards the future: "Our discovery represents a first step towards one of the most important goals of modern astrophysics: to characterize the physical structure and chemical composition of giant and, eventually, terrestrial-like planets."

Last September, the same team of astronomers reported a faint reddish speck of light in the close vicinity of a young brown dwarf (see ESO PR 23/04). The feeble object, now called 2M1207b, is more than 100 times fainter than the brown dwarf, 2M1207A. The spectrum of 2M1207b presents a strong signature of water molecules, thereby confirming that it must be cold. Based on the infrared colours and the spectral data, evolutionary model calculations led to the conclusion that 2M1207b is a 5 Jupiter-mass planet. Its mass can be estimated also by use of a different method of analysis, which focuses on the strength of its gravitational field; this technique suggests that the mass might be even less than 5 Jupiters.

At the time of its discovery in April 2004, it was impossible to prove that the faint source is not a background object (such as an unusual galaxy or a peculiar cool star with abnormal infrared colours), even though this appeared very unlikely. Observations with the Hubble Space Telescope, obtained in August 2004, corroborated the VLT/NACO observations, but were taken too soon after the NACO ones to conclusively demonstrate that the faint source is a planet.

The new observations show with high confidence that the two objects are moving together and hence are gravitationally bound.

"Given the rather unusual properties of the 2M1207 system, the giant planet most probably did not form like the planets in our solar system," says Gael Chauvin. "Instead it must have formed the same way our Sun formed, by a one-step gravitational collapse of a cloud of gas and dust."

The paper describing this research has been accepted for publication in Astronomy and Astrophysics.

The same European/American team has had another paper just accepted for publication in Astronomy & Astrophysics; this paper reports the imaging discovery with the same VLT/NACO instrumentation of a lightweight companion to AB Pictoris, a young star located about 150 light years from Earth. The estimated mass of the companion is between 13 and 14 times the mass of Jupiter, which places the companion right on the border line between massive planets and the lowest mass brown dwarfs.

Henri Boffin | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>