Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice Scalpel For Explosives

02.05.2005


How can a tin be opened if it contains not tinned goods but explosives? Or a shell or something no less dangerous, for instance, a retired nuclear reactor?



Certainly, metal can be cut up mechanically, but this is very dangerous. Torch flame or laser beam do not suit the purpose even more so. However, a sheet of water released at high pressure, particularly if additionally saturated with a stream of frozen drops, would probably suit. The researchers from the Tula State University are sure of that.

They suggest that morally and physically obsolete ammunition should be reclaimed in this particular way – the casing should be cut up and explosives should be washed out. In their opinion, this is the safest way, also from the ecological point of view, to separate metal from nitrocompounds - explosive and powder. Information about that is contained in the advanced research database maintained by the International Science and Technology Center.


Evidently, it is not easy to produce such installation. The object itself is very dangerous. An incautious movement, blow, vibration is enough – and the explosion is inevitable. The stream should be sufficiently strong to be able to cut up metal and then to wash the content out of the casing without provoking the explosion. Besides, the equipment should be operated remotedly, it should be safe not only in the broad sense of the word, but also ecologically secure, and finally it should operate quickly and economically – spending minimum time and energy.

Therefore, from the point of view of the authors, first of all, it is necessary to carry out a phase of theoretical study. First, it is necessary to analyze physical processes taking place in a shell, when sheet of water at high pressure is directed at it, to clarify how explosives would respond to this impact. If a stream of icy granules flying at enormous velocity is used, it is necessary to create the pattern of their formation. It is necessary to investigate how the stream of compressed air, liquid and refrigerating medium may be transformed into a stream of racing pieces of ice. It is necessary to calculate how such abrasive will interact with explosive, and then the researchers can pass to experiments and create their own installation.

In general, it is known that abrasive – the finest bits of hard material – can be added to the sheet of water. Then, figuratively speaking, percussion force of sheet of water will be much more. The researchers have already developed and tested such experimental setup at the Skuratov engineering plant. A liquid jet with abrasive powder - for the time present without pieces of ice – easily cuts up aluminium alloy plate A10, about 3 millimeters thick, and steel angle bar 6 millimeters thick. This can be done rather quickly – depending on the object – at the velocity from 0.5 through 3.2 millimeters per second.

However, this installation is demonstration of the method’s possibilities, rather than the final result. The authors are sure that in the future they will be able also to create compact mobile installations. With their help, pressure of the stream on the surface of the object will be measured by dozens of thousands of atmospheres.

The researchers also tried to wash various types of explosives out of ammunition through the fuse opening. The stream parameters selected by the authors based on mathematical calculations allowed to perform that efficiently and accurately. Then the bits of explosives may be simply drained and the clean water can be reused.

On top of that, the method should be economical enough – quick, convenient and inexpensive, and also ecologically secure for the environment. It is worth noting that the probability of explosion in this case should be completely excluded.

For the time being, an “ideal” installation – small, efficient and secure – has not been created yet. A number of theoretical and practical tasks are pending resolution. However, the experience in the area of basic research and experimental investigation accumulated by the group of researchers under the guidance of Professor Brenner, honoured worker of science and engineering of the Russian Federation, is the evidence that the researchers are capable of solving tasks of this kind.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>