Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice Scalpel For Explosives

02.05.2005


How can a tin be opened if it contains not tinned goods but explosives? Or a shell or something no less dangerous, for instance, a retired nuclear reactor?



Certainly, metal can be cut up mechanically, but this is very dangerous. Torch flame or laser beam do not suit the purpose even more so. However, a sheet of water released at high pressure, particularly if additionally saturated with a stream of frozen drops, would probably suit. The researchers from the Tula State University are sure of that.

They suggest that morally and physically obsolete ammunition should be reclaimed in this particular way – the casing should be cut up and explosives should be washed out. In their opinion, this is the safest way, also from the ecological point of view, to separate metal from nitrocompounds - explosive and powder. Information about that is contained in the advanced research database maintained by the International Science and Technology Center.


Evidently, it is not easy to produce such installation. The object itself is very dangerous. An incautious movement, blow, vibration is enough – and the explosion is inevitable. The stream should be sufficiently strong to be able to cut up metal and then to wash the content out of the casing without provoking the explosion. Besides, the equipment should be operated remotedly, it should be safe not only in the broad sense of the word, but also ecologically secure, and finally it should operate quickly and economically – spending minimum time and energy.

Therefore, from the point of view of the authors, first of all, it is necessary to carry out a phase of theoretical study. First, it is necessary to analyze physical processes taking place in a shell, when sheet of water at high pressure is directed at it, to clarify how explosives would respond to this impact. If a stream of icy granules flying at enormous velocity is used, it is necessary to create the pattern of their formation. It is necessary to investigate how the stream of compressed air, liquid and refrigerating medium may be transformed into a stream of racing pieces of ice. It is necessary to calculate how such abrasive will interact with explosive, and then the researchers can pass to experiments and create their own installation.

In general, it is known that abrasive – the finest bits of hard material – can be added to the sheet of water. Then, figuratively speaking, percussion force of sheet of water will be much more. The researchers have already developed and tested such experimental setup at the Skuratov engineering plant. A liquid jet with abrasive powder - for the time present without pieces of ice – easily cuts up aluminium alloy plate A10, about 3 millimeters thick, and steel angle bar 6 millimeters thick. This can be done rather quickly – depending on the object – at the velocity from 0.5 through 3.2 millimeters per second.

However, this installation is demonstration of the method’s possibilities, rather than the final result. The authors are sure that in the future they will be able also to create compact mobile installations. With their help, pressure of the stream on the surface of the object will be measured by dozens of thousands of atmospheres.

The researchers also tried to wash various types of explosives out of ammunition through the fuse opening. The stream parameters selected by the authors based on mathematical calculations allowed to perform that efficiently and accurately. Then the bits of explosives may be simply drained and the clean water can be reused.

On top of that, the method should be economical enough – quick, convenient and inexpensive, and also ecologically secure for the environment. It is worth noting that the probability of explosion in this case should be completely excluded.

For the time being, an “ideal” installation – small, efficient and secure – has not been created yet. A number of theoretical and practical tasks are pending resolution. However, the experience in the area of basic research and experimental investigation accumulated by the group of researchers under the guidance of Professor Brenner, honoured worker of science and engineering of the Russian Federation, is the evidence that the researchers are capable of solving tasks of this kind.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>