Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke ’all-optical’ switch could advance light-based telecommunications

29.04.2005


Duke University physicists have developed a switching technique that uses a very weak beam of light to control a much stronger beam. The achievement could make optical telecommunications devices perform far more efficiently, and perhaps also aid in the development of futuristic quantum communications devices, the scientists said. "What’s important here is that this is an ’all-optical’ switch, using only light, with a weak beam affecting a strong one," said physics professor Daniel Gauthier, the Duke team leader.

Such a switching technique could improve today’s telecommunications switching arrays that must repeatedly and inefficiently convert light to electricity and then back to light -- a method especially impractical for very high speed telecommunications networks, Gauthier said in an interview.

Until now, Gauthier said, scientists have primarily demonstrated switching techniques that use stronger light beams to control weaker ones. "And that’s not very useful in a telecommunications networking device because you would need a lot of energy to switch a tiny amount," he said.



Gauthier and other team members will describe their findings in the Friday, April 29, 2005, issue of the research journal Science, in a report whose first author is Gauthier’s graduate student Andrew Dawes. Additional co-authors are Gauthier’s post-doctoral research associate Lucas Illing and former Duke physics undergraduate Susan Clark, who is now in graduate study at Stanford University.

Their research is funded by the Defense Advance Research Projects Agency, the National Science Foundation and the U.S. Army Research Office.

The Duke team’s switching system makes use of an instability that Gauthier initially studied in graduate school.

The scientists point two identical beams of laser light at each other while both opposing beams also pass through a warmed rubidium vapor trapped in a glass vacuum tube.

Normally, such counter pointed laser light beams would just unresponsively pass through each other, Gauthier said. But this laser light is of just the right infrared wavelength to be affected by the natural excitations of the rubidium atoms.

This interaction between the light and the rubidium atoms triggers an instability that creates two additional beams. When these secondary beams are projected on a screen, they form an optical pattern. That pattern, consisting of a pair of spots, can be rotated to a new alignment when a third "switching" beam is passed through the rubidium vapor.

Crucially, the strength of the switching beam is also much weaker than the original beams. According to their Science report, the Duke physicists have been able to operate their switch with beams up to 6,500 times weaker than the light in the optical pattern.

"So the idea is, we’ve got beams that are pointing in one direction and might be going down to a particular place in a network," Gauthier said. "Then, by putting in a very weak beam, we can rotate those original beams to a new orientation. So the spots could then go to different channels in a network system, for example."

The idea of such a weak signal controlling a stronger one "makes the switch ’cascadable,’" Gauthier said. "That’s what you need to be able to have the output of one switch affect the input of another switch downstream. No other group we know of has demonstrated this in an all-optical switch."

So far, the Duke group has used weak switching beams consisting of as few as 2,700 individual particles of light, known as photons.

Their report in Science also suggests possible techniques for using switching beams as weak as single photons, perhaps by reducing the size of the laser beams or modifying the atomic vapor.

"There are some applications in quantum information where you would like to have a switch that could be actuated with a single photon," Gauthier said. Quantum computing and telecommunications refers to systems that make use of the quirky features of quantum mechanics to solve otherwise intractable computational problems and provide secure communications channels.

Those quantum effects only manifest themselves in systems where individual photons, electrons or atoms can be manipulated.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>