Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke ’all-optical’ switch could advance light-based telecommunications

29.04.2005


Duke University physicists have developed a switching technique that uses a very weak beam of light to control a much stronger beam. The achievement could make optical telecommunications devices perform far more efficiently, and perhaps also aid in the development of futuristic quantum communications devices, the scientists said. "What’s important here is that this is an ’all-optical’ switch, using only light, with a weak beam affecting a strong one," said physics professor Daniel Gauthier, the Duke team leader.

Such a switching technique could improve today’s telecommunications switching arrays that must repeatedly and inefficiently convert light to electricity and then back to light -- a method especially impractical for very high speed telecommunications networks, Gauthier said in an interview.

Until now, Gauthier said, scientists have primarily demonstrated switching techniques that use stronger light beams to control weaker ones. "And that’s not very useful in a telecommunications networking device because you would need a lot of energy to switch a tiny amount," he said.



Gauthier and other team members will describe their findings in the Friday, April 29, 2005, issue of the research journal Science, in a report whose first author is Gauthier’s graduate student Andrew Dawes. Additional co-authors are Gauthier’s post-doctoral research associate Lucas Illing and former Duke physics undergraduate Susan Clark, who is now in graduate study at Stanford University.

Their research is funded by the Defense Advance Research Projects Agency, the National Science Foundation and the U.S. Army Research Office.

The Duke team’s switching system makes use of an instability that Gauthier initially studied in graduate school.

The scientists point two identical beams of laser light at each other while both opposing beams also pass through a warmed rubidium vapor trapped in a glass vacuum tube.

Normally, such counter pointed laser light beams would just unresponsively pass through each other, Gauthier said. But this laser light is of just the right infrared wavelength to be affected by the natural excitations of the rubidium atoms.

This interaction between the light and the rubidium atoms triggers an instability that creates two additional beams. When these secondary beams are projected on a screen, they form an optical pattern. That pattern, consisting of a pair of spots, can be rotated to a new alignment when a third "switching" beam is passed through the rubidium vapor.

Crucially, the strength of the switching beam is also much weaker than the original beams. According to their Science report, the Duke physicists have been able to operate their switch with beams up to 6,500 times weaker than the light in the optical pattern.

"So the idea is, we’ve got beams that are pointing in one direction and might be going down to a particular place in a network," Gauthier said. "Then, by putting in a very weak beam, we can rotate those original beams to a new orientation. So the spots could then go to different channels in a network system, for example."

The idea of such a weak signal controlling a stronger one "makes the switch ’cascadable,’" Gauthier said. "That’s what you need to be able to have the output of one switch affect the input of another switch downstream. No other group we know of has demonstrated this in an all-optical switch."

So far, the Duke group has used weak switching beams consisting of as few as 2,700 individual particles of light, known as photons.

Their report in Science also suggests possible techniques for using switching beams as weak as single photons, perhaps by reducing the size of the laser beams or modifying the atomic vapor.

"There are some applications in quantum information where you would like to have a switch that could be actuated with a single photon," Gauthier said. Quantum computing and telecommunications refers to systems that make use of the quirky features of quantum mechanics to solve otherwise intractable computational problems and provide secure communications channels.

Those quantum effects only manifest themselves in systems where individual photons, electrons or atoms can be manipulated.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>