Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini’s Radar And Vims Instruments Eye Impact Crater On Titan

28.04.2005


The Cassini spacecraft has seen a 50-mile-diameter impact crater on Titan with different instruments on separate flybys, giving scientists new information on impact-crater formation on Saturn’s giant moon.

They’ve released a composite image of one of Titan’s most prominent impact craters as previously seen by Cassini’s radar and recently seen by its Visual and Infrared Mapping Spectrometer (VIMS).

The composite image is online at saturn.jpl.nasa.gov and at uanews.org.



The radar image was taken during the Cassini spacecraft’s Feb. 15, 2005 Titan flyby, and the VIMS images were taken during its April 16, 2005 Titan flyby, said Robert H. Brown of The University of Arizona, head of the VIMS experiment. Brown released the composite image at the European Geosciences Union meeting in Vienna, Austria, on Monday (April 25).

In radar, the crater and its ejecta blanket are bright. In radar, brighter surfaces mean rougher terrains, or else terrains tilted towards the radar. At VIMS infrared wavelengths, the crater appears dark and the ejecta blanket is bright, showing that the crust on the crater floor is different material than the ejecta.

"The composite image highlights the differences and similarities in how two instruments see the same thing," Brown said. "It shows the power of combining instruments when you are trying to understand objects in the Saturnian system."

VIMS is essentially a camera that takes pictures in 352 different colors at the same time. The colors cover the visible spectrum and into the infrared, or from three-tenths of a micron up to five and one-tenth microns. (A micron is one millionth of a meter.) Scientists can identify the chemical composition of the surfaces, atmospheres and rings of Saturn and its moons using VIMS.

Cassini began a 4-year-or-more exploratory tour of the Saturn system in July 2004. It has seen two impact craters on Titan so far.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The radar instrument team is based at JPL, working with team members from the United States and several European countries. The visual and infrared mapping spectrometer team is based at the University of Arizona, Tucson.

This three-panel image shows one of Titan¹s most prominent impact craters in an infrared-wavelength image (left), radar image (center) and in the false-color image (right). The Cassini radar imaged this crater during Cassini¹s third flyby of Titan, on Feb. 15, 2005, (see PIA07368). The crater, located at 16 degrees west, 11 degrees north, is about 80 kilometers (50 miles) in diameter and is surrounded beyond that by a blanket of material thrown out of the crater during impact. In radar, brighter surfaces mean rougher terrains, or else terrains tilted toward the radar.

Two Titan flybys later, on April 16, the visual infrared mapping spectrometer on Cassini obtained images of the same crater. The panel on the left is an image at the 2.0 micron wavelength, showing that the crater has a dark floor and a small bright area in the center. The crater is surrounded by bright material, which has a very faint halo slightly darker than the surrounding dark material. Compare the radar image with the visual infrared mapping spectrometer image. Both the crater and the blanket of surrounding material (called ejecta) are bright at radar wavelengths; in the infrared, the crater itself is dark and this blanket of material is quite bright. In radar, the faint halo surrounding the blanket of material is quite similar in appearance to the rest of the ejecta blanket.

The right hand panel is a false-color visual infrared mapping spectrometer image of the crater at lower resolution. It shows the faint halo to be slightly bluer than surrounding material. That the material is bluer than its surroundings, while also being darker, suggests that the faint halo is somewhat different in composition. This suggests that the composition of Titan¹s upper crust varies with depth, and various materials were excavated when the crater was formed.

The same structure appearing so different to different instruments illustrates the importance of multiple instruments studying such phenomena. The Cassini spacecraft, being the most interdisciplinary spacecraft ever flown, strongly embodies such an approach.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The radar instrument team is based at JPL, working with team members from the United States and several European countries. The visual and infrared mapping spectrometer team is based at the University of Arizona, Tucson.

For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov. For more information about the visual and infrared mapping spectrometer visit http://wwwvims.lpl.arizona.edu/. Credit: NASA/JPL/University of Arizona

Lori Stiles | UA News Services
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>