Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strange Elements Date Back to Birth of Solar System

27.04.2005


Thirty years after scientists at the University of Missouri-Rolla and Grambling College discovered “strange” Xenon in meteorites, scientists from Japan and France are reporting the discovery of other strange elements left over from the birth of the solar system.



A 1976 study published in the journal Nature showed that strange Xenon, which is made in supernova explosions, is present within the composition of the Sun. Those findings by the UMR and Grambling team were largely dismissed. Now, in the March 31 issue of Nature, the Japanese and French team reports new evidence that the Sun has strange Oxygen, too.

“Elements are called ‘strange’ when the mix of atoms that comprise the element is unlike the mix of atoms that make up that element here on Earth,” explains UMR nuclear chemistry professor Dr. Oliver Manuel, who believes our solar system was created in a supernova blast. “Strange Xenon contains Xenon-136, which is made by rapid neutron capture in a supernova. Likewise, strange Oxygen has Oxygen-16, which is made by fusion inside a massive star.”


Manuel has been invited to speak at an international conference on new physics this summer in Dubna, Russia, where he plans to share his latest work with other scientists. Although most scientific colleagues don’t subscribe to his hypothesis about the birth of the solar system, Manuel says several studies published recently are validating what he’s believed since the early 1970s: that our sun is the remains of a massive star that exploded to create the current sun and its nine planets, including Earth. “The decay of the radioactive elements made in that explosion still makes the insides of the Earth hot today,” Manuel says.

In Russia, Manuel will explain in detail how he believes the Sun separates elements and masks its internal workings. “Our sun is a huge plasma diffuser that sorts atoms by weight and moves light elements like hydrogen and helium to its surface,” Manuel says.

In 1983, Manuel and a UMR graduate student, Golden Hwaung, studied the solar wind and discovered that 22 different types of atoms had been separated and that lightweight atoms moved to the surface of the Sun. Earlier this year, Manuel and co-authors reported in the Journal of Fusion Energy that an additional 72 atoms had been sorted in the same fashion. Together, the two studies span the entire weight range of the stable elements, according to Manuel. “Although the surface of the Sun is made of lightweight elements, the data shows the seven most abundant elements inside the Sun are iron, oxygen, silicon, nickel, sulfur, magnesium and calcium,” Manuel says. “The most abundant elements inside the Sun are the same elements that are abundant in ordinary meteorites and rocky planets.”

In the 1983 study, Manuel and Hwaung predicted that Jupiter would contain strange Xenon from the outer layers of the supernova that produced the solar system. And, in 1998, a team of UMR undergraduate students advised by Manuel used data from the Galileo mission to show that strange Xenon is indeed dominant in the outer regions of the solar system.

At the birth of the solar system, Manuel says, heavy elements from deep within the supernova stayed close to the Sun and congregated to form terrestrial planets like Earth, while the light elements from the outer layers of the supernova formed the big gaseous planets like Jupiter.

So all of the mass in the solar system came from the same source, according to Manuel’s model, but the elemental composition of a given planet and the amount of “strange” elements it trapped depends on its distance from the Sun.

Scientists have believed that fusion of hydrogen atoms must be the source of the Sun’s energy since the first hydrogen bomb blast in the early 1950s. Therefore, it has been widely believed that the composition of the entire Sun must be mostly hydrogen. Manuel disagrees. He says hydrogen, a lightweight element, is naturally abundant at the Sun’s surface, but he thinks heavy iron is the most abundant element inside the Sun.

While many scientists now admit that a supernova might have had something to do with the formation of the solar system, they’re not ready to fully embrace Manuel’s model.

Earlier this year, findings at Arizona State University suggested a nearby supernova must have injected radioactive isotopes into the interstellar cloud of light elements that is believed to have formed the solar system. Manuel says the supernova was closer than they think. Furthermore, he says, the solar system was born catastrophically – it didn’t slowly evolve from an interstellar cloud.

Last spring, the Arizona State team detected another footprint of the supernova explosion when they found the decay product of Iron-60 in a meteorite that had circled the Sun for millions of years before landing on Earth. In a Science article, the team noted that Iron-60 can only be made in a supernova. “All of the iron in the Sun and Earth was made with the radioactive Iron-60 near the supernova core,” Manuel says.

Although new findings are lending a lot of credibility to the notion that a supernova had something to do with the formation of the solar system, Manuel and his students have been chasing and processing the evidence for decades. Back in 1971, UMR graduate student Mervet Boulos found the decay products of short-lived elements inside the Earth and published her findings in the journal Science. “The short-lived elements are gone now,” Manuel says, “but long-lived radioactive elements like uranium still survive. This is what keeps the insides of the Earth hot.”

Cosmologists who study the origin of the universe and the natural laws that govern its behaviors are also interested in Manuel’s work – because our sun is the only one close enough for detailed study, and, therefore, it serves as a model for all of the other stars in the cosmos.

Immediately after the Russian conference on new physics, Manuel has been invited to present a paper at the “First Crisis in Cosmology Conference” in Moncao, Portugal. There, Manuel will explain what his measurements imply for the internal workings of the Sun and other ordinary stars.

The sun’s not yellow; it’s chicken – Bob Dylan

Mary Helen Stoltz | newswise
Further information:
http://www.umr.edu

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

New Test for Rare Immunodeficiency

23.08.2017 | Life Sciences

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>