Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Strange Elements Date Back to Birth of Solar System


Thirty years after scientists at the University of Missouri-Rolla and Grambling College discovered “strange” Xenon in meteorites, scientists from Japan and France are reporting the discovery of other strange elements left over from the birth of the solar system.

A 1976 study published in the journal Nature showed that strange Xenon, which is made in supernova explosions, is present within the composition of the Sun. Those findings by the UMR and Grambling team were largely dismissed. Now, in the March 31 issue of Nature, the Japanese and French team reports new evidence that the Sun has strange Oxygen, too.

“Elements are called ‘strange’ when the mix of atoms that comprise the element is unlike the mix of atoms that make up that element here on Earth,” explains UMR nuclear chemistry professor Dr. Oliver Manuel, who believes our solar system was created in a supernova blast. “Strange Xenon contains Xenon-136, which is made by rapid neutron capture in a supernova. Likewise, strange Oxygen has Oxygen-16, which is made by fusion inside a massive star.”

Manuel has been invited to speak at an international conference on new physics this summer in Dubna, Russia, where he plans to share his latest work with other scientists. Although most scientific colleagues don’t subscribe to his hypothesis about the birth of the solar system, Manuel says several studies published recently are validating what he’s believed since the early 1970s: that our sun is the remains of a massive star that exploded to create the current sun and its nine planets, including Earth. “The decay of the radioactive elements made in that explosion still makes the insides of the Earth hot today,” Manuel says.

In Russia, Manuel will explain in detail how he believes the Sun separates elements and masks its internal workings. “Our sun is a huge plasma diffuser that sorts atoms by weight and moves light elements like hydrogen and helium to its surface,” Manuel says.

In 1983, Manuel and a UMR graduate student, Golden Hwaung, studied the solar wind and discovered that 22 different types of atoms had been separated and that lightweight atoms moved to the surface of the Sun. Earlier this year, Manuel and co-authors reported in the Journal of Fusion Energy that an additional 72 atoms had been sorted in the same fashion. Together, the two studies span the entire weight range of the stable elements, according to Manuel. “Although the surface of the Sun is made of lightweight elements, the data shows the seven most abundant elements inside the Sun are iron, oxygen, silicon, nickel, sulfur, magnesium and calcium,” Manuel says. “The most abundant elements inside the Sun are the same elements that are abundant in ordinary meteorites and rocky planets.”

In the 1983 study, Manuel and Hwaung predicted that Jupiter would contain strange Xenon from the outer layers of the supernova that produced the solar system. And, in 1998, a team of UMR undergraduate students advised by Manuel used data from the Galileo mission to show that strange Xenon is indeed dominant in the outer regions of the solar system.

At the birth of the solar system, Manuel says, heavy elements from deep within the supernova stayed close to the Sun and congregated to form terrestrial planets like Earth, while the light elements from the outer layers of the supernova formed the big gaseous planets like Jupiter.

So all of the mass in the solar system came from the same source, according to Manuel’s model, but the elemental composition of a given planet and the amount of “strange” elements it trapped depends on its distance from the Sun.

Scientists have believed that fusion of hydrogen atoms must be the source of the Sun’s energy since the first hydrogen bomb blast in the early 1950s. Therefore, it has been widely believed that the composition of the entire Sun must be mostly hydrogen. Manuel disagrees. He says hydrogen, a lightweight element, is naturally abundant at the Sun’s surface, but he thinks heavy iron is the most abundant element inside the Sun.

While many scientists now admit that a supernova might have had something to do with the formation of the solar system, they’re not ready to fully embrace Manuel’s model.

Earlier this year, findings at Arizona State University suggested a nearby supernova must have injected radioactive isotopes into the interstellar cloud of light elements that is believed to have formed the solar system. Manuel says the supernova was closer than they think. Furthermore, he says, the solar system was born catastrophically – it didn’t slowly evolve from an interstellar cloud.

Last spring, the Arizona State team detected another footprint of the supernova explosion when they found the decay product of Iron-60 in a meteorite that had circled the Sun for millions of years before landing on Earth. In a Science article, the team noted that Iron-60 can only be made in a supernova. “All of the iron in the Sun and Earth was made with the radioactive Iron-60 near the supernova core,” Manuel says.

Although new findings are lending a lot of credibility to the notion that a supernova had something to do with the formation of the solar system, Manuel and his students have been chasing and processing the evidence for decades. Back in 1971, UMR graduate student Mervet Boulos found the decay products of short-lived elements inside the Earth and published her findings in the journal Science. “The short-lived elements are gone now,” Manuel says, “but long-lived radioactive elements like uranium still survive. This is what keeps the insides of the Earth hot.”

Cosmologists who study the origin of the universe and the natural laws that govern its behaviors are also interested in Manuel’s work – because our sun is the only one close enough for detailed study, and, therefore, it serves as a model for all of the other stars in the cosmos.

Immediately after the Russian conference on new physics, Manuel has been invited to present a paper at the “First Crisis in Cosmology Conference” in Moncao, Portugal. There, Manuel will explain what his measurements imply for the internal workings of the Sun and other ordinary stars.

The sun’s not yellow; it’s chicken – Bob Dylan

Mary Helen Stoltz | newswise
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>