Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

XMM-Newton sees ’hot spots’ on neutron stars

25.04.2005


X-ray image of the neutron star ’Geminga’


Thanks to data from ESA’s XMM-Newton spacecraft, European astronomers have observed for the first time rotating ‘hot spots’ on the surfaces of three nearby neutron stars.

This result provides a breakthrough in understanding the ‘thermal geography’ of neutron stars, and provides the first measurement of very small-sized features on objects hundreds to thousands light-years away. The spots vary in size from that of a football field to that of a golf course.

Neutron stars are extremely dense and fast-rotating stars mainly composed of neutrons. They are extremely hot when they are born, being remnants of supernovae explosions. Their surface temperature is thought to gradually cool down with time, decreasing to less than one million degrees after 100 000 years.



However, astrophysicists had proposed the existence of physical mechanisms by which the electromagnetic energy emitted by neutron stars could be funnelled back into their surface in certain regions. Such regions, or ‘hot spots’, would then be reheated and reach temperatures much higher than the rest of the cooling surface. Such peculiar ‘thermal geography’ of neutron stars, although speculated, could never be observed directly before.

Using XMM-Newton data, a team of European astronomers have observed rotating hot spots on three isolated neutron stars that are well-known X-ray and gamma-ray emitters. The three observed neutron stars are ‘PSR B0656-14’, ‘PSR B1055-52’, and ‘Geminga’, respectively at about 800, 2000 and 500 light-years away from us.

As for normal stars, the temperature of a neutron star is measured through its colour that indicates the energy the star emits. The astronomers have divided the neutron star surfaces into ten wedges and have measured the temperature of each wedge. By doing so, they could observe rise and fall of emission from the star’s surface, as the hot spots disappear and appear again while the star rotates. It is also the first time that surface details ranging in size from less than 100 metres to about one kilometre are identified on the surface of objects hundreds to thousands light-years away.

The team think that the hot spots are most probably linked to the polar regions of the neutron stars. This is where the star’s magnetic field funnels charged particles back towards the surface, in a way somehow similar to the ‘Northern lights’, or aurorae, seen at the poles of planets which have magnetic fields, such as Earth, Jupiter and Saturn.

“This result is a first, and a key to understand the internal structure, the dominant role of the magnetic field treading the star interior and its magnetosphere, and the complex phenomenology of neutron stars,” says Patrizia Caraveo, of the Istituto Nazionale di Astrofisica (IASF), Milan, Italy.

“It has been possible only thanks to the new capabilities provided by the ESA XMM-Newton observatory. We look forward to applying our method to many more magnetically isolated neutron stars,” concludes Caraveo.

However, there is still a puzzle for the astronomers. If the three ‘musketeers’ are predicted to have polar caps of comparable dimensions, why then are the hot spots observed in the three cases so different in size, ranging from 60 metres to one kilometre? What mechanisms rule the difference? Or does this mean some of the current predictions on neutron stars magnetic fields need to be revised?

The result, by Andrea De Luca, Patrizia Caraveo, Sandro Mereghetti, Matteo Negroni (IASF) and Giovanni Bignami of CESR, Toulouse and University of Pavia, is published in the 20 April 05 issue of the Astrophysical Journal (http://www.journals.uchicago.edu/ApJ, vol. 623:1051-1069).

Norbert Schartel | EurekAlert!
Further information:
http://www.esa.int/esaCP/SEMLY9NQS7E_index_0.html
http://www.sciops.esa.int

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>