Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-rays shine light on high-intensity gas lamps

22.04.2005


An X-ray technique developed by physicists at the National Institute of Standards and Technology (NIST) is helping to improve the design and energy efficiency of the bright white lights often used to illuminate stadiums, roads and many other settings.


Scientists perform a series of calculations to transform X-ray intensity data (left, a montage of five separate images) into an image of the spatial distribution of mercury atoms in a high-intensity discharge lamp (right). Blue indicates the lowest density of atoms, red the highest.



High-intensity gas discharge (HID) lamps produce 26 percent of the nation’s light output, but, as a result of their high energy efficiency, consume only 17 percent of the electricity used for lighting. Continuing improvements in energy efficiency and other features will reduce electricity use and the negative environmental effects of power generation. Improved efficiency could save lots of money: HID lamps consume roughly 4 percent of U.S. electricity, equivalent to about $10 billion annually.

The NIST technique uses X-ray imaging to improve understanding of the complex science underlying the HID lamp’s design. Such lamps have two electrodes in a ceramic tube that contains small amounts of mercury and metal-halide salts. An electric current between the electrodes heats the lamp, vaporizing the mercury and metal-halide salts and producing a gas of electrically charged particles, or plasma. Metal atoms, excited by collisions with electrons in the plasma, emit light at many different wavelengths, producing a bright, white light.


In the NIST technique, an HID lamp is placed in an intense beam of X-rays. The X-rays penetrate the lamp’s ceramic housing but are partially absorbed by the mercury gas in the lamp, casting a shadow in the beam. A special digital camera behind the lamp captures a high-resolution, two-dimensional image of this X-ray shadow showing the density of mercury atoms in the discharge. From the mercury distribution, the temperature distribution in the lamp also can be determined. This technique has been used to quantify processes that consume power without producing light.

Researchers now are demonstrating that this technique can be implemented in industrial laboratories using small-scale X-ray sources. This project provides measurement support to universities participating in the Advanced Light Source Research Program-II (ALITE-II) of the Electric Power Research Institute. The goals of the consortium are to make significant improvements in lighting technology by combining the resources of university, industry and government laboratories in pre-competitive research.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>