Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanomagnets bend the rules


Nanocomposite materials seem to flout conventions of physics. In the latest example of surprising behavior, reported* by scientists at the National Institute of Standards and Technology (NIST) and Brookhaven National Laboratory, a class of nanostructured materials that are key components of computer memories and other important technologies undergo a previously unrecognized shift in the rate at which magnetization changes at low temperatures.

The team suggests that the apparent anomaly described as an "upturn" in magnetization may be due to the quantum mechanical process known as Bose-Einstein condensation. They maintain that, in nanostructured magnets, energy waves called magnons coalesce into a common ground state and, in effect, become one. This collective identity, the researchers say, results in magnetic behavior seemingly at odds with a long-standing theory.

The new finding could prompt a reassessment of test methods used to predict technologically important properties of "ferromagnetic" materials. The results also could point the way to marked improvements in the performance of microwave devices. Magnets are integral to these devices, used in a variety of communication and defense technologies.

Ferromagnets, including iron, cobalt, nickel and many tailor-made materials, become magnetic when exposed to an external magnetic field. As the strength of the external field increases, the materials become more magnetic, an atomic-level, temperature-influenced process called magnetic saturation. When the external field is removed, ferromagnets undergo an internal restructuring and the acquired magnetization decays, or fades, very slowly at a rate that increases with temperature.

Determined through accelerated testing methods, the temperature dependence of magnetic saturation and the rate of magnetization decay are key concerns in the design of permanent magnets, hard disks and other magnetic data storage systems.

The curious "upturn" in magnetic saturation is consistent with another magnetic anomaly reported in 1987 by NIST materials scientist Lawrence Bennett and colleagues. In an analysis of magnetic decay in a nickel-copper alloy, the team found a then-inexplicable peak in the decay rate within a range of low temperatures.

"Two very different experiments, almost 20 years apart, gave us similar results," explains Bennett. "These phenomena appear to be confined entirely to nanostructured materials."

Bennett is a co-author of the new report, along with Edward Della Torre, a NIST materials researcher and engineering professor at George Washington University, and Richard Watson, a theorist at Brookhaven National Laboratory.

In ferromagnetic materials immersed in a magnetic field, magnetization increases as the temperature drops. Cooling permits electrons, whirling like tops as they rotate about and among atoms that make up the materials, to line up their spins with the external field. As more heat energy is lost, more electrons align their spins in a very tidy arrangement. The strength of magnetization rises as this long-range ordering extends inside the material.

In so-called single-crystal ferromagnets, with their lattice-like atomic arrangement, the alignment of spins proceeds almost systematically. In fact, this seemingly straightforward relationship between temperature and magnetization had been reduced to a formula (known as Bloch’s temperature law) more than seven decades ago.

The more structurally disordered multilayered cobalt-platinum ferromagnet initially evaluated by the researchers did not conform with the textbooks, however. As the temperature was lowered, the magnetization started increasing faster than expected, beginning at 14 degrees above the coldest possible temperature, called absolute zero. And the rate remained unexpectedly high down to 2 degrees above absolute zero.

The researchers attribute this apparent law-defying behavior to the banding together of variously dispersed magnons into a kind of quantum confederation. The shared identity technically termed a Bose Einstein condensate has a countervailing influence on normally unruly magnons.

Magnons typically are isolated wave patterns that are out of magnetic alignment with the rest of a sample, an indication that spinning electrons are breaking ranks. In effect, magnons could be classified as "anti magnetic." Bose-Einstein condensation results in a collective behavior that appears to counter this tendency among magnons, leading to the observed upturn in magnetization.

Rather than rewriting a long-accepted law of physics, this new understanding can be used to extend Bloch’s law into the nanostructural regime, explains Della Torre. After inserting a term that accounts for energy change in a system, the team used the law to predict the high rate of saturation magnetization observed in several types of ferromagnetic nanocomposites.

"Now," says Bennett, "the challenge is to determine how the size, shape and other features of nanostructured materials are related to the Bose-Einstein condensation temperature."

As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST develops and promotes measurement, standards and technology to enhance productivity, facilitate trade and improve the quality of life.

Mark Bello | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>