Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reno professor showcases ’mini’ ion accelerator

19.04.2005


Tom Cowan’s team cultivating new laser technology for more precise cancer treatments



Tom Cowan’s team is thinking smaller, but with big impact. Particle accelerators are a key research tool in a high energy physicist’s arsenal, but they take up a lot of space – miles and miles of it. But at the University of Nevada, Reno, smaller is better.

Cowan, director of the Nevada Terawatt Facility at the University, and his research partners have produced a proton beam that has 100 times higher quality than any conventional particle accelerator and fits on a tabletop.


Irradiation with accelerated carbon ions can pinpoint a tumor and destroy it without sacrificing surrounding tissue, making possible treatment for some cancers, such as those in the head region, that were previously untreatable.

Reducing the size, and thus ultimately the cost, and improving the quality of the ion beam could provide broader access to basic research as well as applications such as ion beam cancer therapy, Cowan said.

"This could result in cheaper and more readily available ion beam cancer therapies, which have been shown to be far more precise in treating cancer than conventional therapies," he added.

Using ultra high-intensity, short-pulsed lasers to irradiate thin metallic foils, Cowan and his team have generated a high-current beam of protons and ions.

"In principle, this could replace roughly 30 feet of conventional radio frequency accelerators," Cowan told attendees at the American Physical Society meeting here. The experiments were performed at the Laboratoire pour l’Utilization des Lasers Intense (LULI) laser facility at the Ecole Polytechnique near Paris, France, and at the Los Alamos National Laboratory, N.M., using its Trident laser.

Current particle accelerators, by comparison, include the Department of Energy’s Fermilab accelerator in Illinois, which is four miles in circumference, while the huge CERN European Laboratory in Switzerland -- made widely popular in the Dan Brown novel, Angels & Demons -- is nearly 17 miles in circumference.

Cowan leads a team of approximately 65 at the Nevada Terawatt Facility, which houses a 2 trillion watt Z-pinch. The Terawatt team is bringing the Z-pinch together with a one-tenth-scale petawatt laser to create the only facility in the world with this capacity. The facility also boasts strong in-house theory and simulation capabilities supported by a 48-node cluster computer.

Research areas underway at the Terawatt Facility include wire array physics, laboratory studies of astrophysics, dynamic processes in material science, ultra-strongly magnetized solids and plasmas, advanced backlighters, laser plasma and laser solid interactions, laser plasma acceleration, and ultrafast x-ray sources.

The Terawatt Facility theory team is also developing simulations to support experiments that include Department of Energy-funded Lawrence Livermore, Los Alamos, and Sandia National laboratories; LULI; the Institute for Laser Engineering at Osaka University in Japan; and the Max Born Institute and the Gesellschaft fuer Schwerionenforschung in Germany.

Research funding at the facility nearly tripled since 2001 to $8.5 million. Papers published in top refereed publications such as Nature, Physical Review Letters, Physical Review and Physics of Plasmas, as well as refereed conference proceedings, has grown nearly six-fold in four years to 46 papers in 2004.

Cowan joined the Nevada’s physics department in April 2003. He completed his undergraduate work at the California Institute of Technology, Pasadena, and his graduate studies at Yale University. He spent 13 years at the Lawrence Livermore National Laboratory, and two years at General Atomics in San Diego before joining the University.

Melanie Robbins | EurekAlert!
Further information:
http://www.unr.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>