Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reno professor showcases ’mini’ ion accelerator

19.04.2005


Tom Cowan’s team cultivating new laser technology for more precise cancer treatments



Tom Cowan’s team is thinking smaller, but with big impact. Particle accelerators are a key research tool in a high energy physicist’s arsenal, but they take up a lot of space – miles and miles of it. But at the University of Nevada, Reno, smaller is better.

Cowan, director of the Nevada Terawatt Facility at the University, and his research partners have produced a proton beam that has 100 times higher quality than any conventional particle accelerator and fits on a tabletop.


Irradiation with accelerated carbon ions can pinpoint a tumor and destroy it without sacrificing surrounding tissue, making possible treatment for some cancers, such as those in the head region, that were previously untreatable.

Reducing the size, and thus ultimately the cost, and improving the quality of the ion beam could provide broader access to basic research as well as applications such as ion beam cancer therapy, Cowan said.

"This could result in cheaper and more readily available ion beam cancer therapies, which have been shown to be far more precise in treating cancer than conventional therapies," he added.

Using ultra high-intensity, short-pulsed lasers to irradiate thin metallic foils, Cowan and his team have generated a high-current beam of protons and ions.

"In principle, this could replace roughly 30 feet of conventional radio frequency accelerators," Cowan told attendees at the American Physical Society meeting here. The experiments were performed at the Laboratoire pour l’Utilization des Lasers Intense (LULI) laser facility at the Ecole Polytechnique near Paris, France, and at the Los Alamos National Laboratory, N.M., using its Trident laser.

Current particle accelerators, by comparison, include the Department of Energy’s Fermilab accelerator in Illinois, which is four miles in circumference, while the huge CERN European Laboratory in Switzerland -- made widely popular in the Dan Brown novel, Angels & Demons -- is nearly 17 miles in circumference.

Cowan leads a team of approximately 65 at the Nevada Terawatt Facility, which houses a 2 trillion watt Z-pinch. The Terawatt team is bringing the Z-pinch together with a one-tenth-scale petawatt laser to create the only facility in the world with this capacity. The facility also boasts strong in-house theory and simulation capabilities supported by a 48-node cluster computer.

Research areas underway at the Terawatt Facility include wire array physics, laboratory studies of astrophysics, dynamic processes in material science, ultra-strongly magnetized solids and plasmas, advanced backlighters, laser plasma and laser solid interactions, laser plasma acceleration, and ultrafast x-ray sources.

The Terawatt Facility theory team is also developing simulations to support experiments that include Department of Energy-funded Lawrence Livermore, Los Alamos, and Sandia National laboratories; LULI; the Institute for Laser Engineering at Osaka University in Japan; and the Max Born Institute and the Gesellschaft fuer Schwerionenforschung in Germany.

Research funding at the facility nearly tripled since 2001 to $8.5 million. Papers published in top refereed publications such as Nature, Physical Review Letters, Physical Review and Physics of Plasmas, as well as refereed conference proceedings, has grown nearly six-fold in four years to 46 papers in 2004.

Cowan joined the Nevada’s physics department in April 2003. He completed his undergraduate work at the California Institute of Technology, Pasadena, and his graduate studies at Yale University. He spent 13 years at the Lawrence Livermore National Laboratory, and two years at General Atomics in San Diego before joining the University.

Melanie Robbins | EurekAlert!
Further information:
http://www.unr.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>