Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New isotope gives a glimpse of the origins of precious metals

18.04.2005


The beginnings of precious metals like gold can be traced to the blink of an eye in an exploding star billions of years ago, and scientists at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University have been able to scrutinize a crucial step in that process.



By reproducing the processes inside supernovas in a laboratory, scientists have resurrected an isotope of nickel – one that no longer exists in nature, but is an important link in the birth of the elements. “Every gold atom you find in the gold on your ring, every one of those atoms has gone through such a process,” said Hendrik Schatz, an associate professor of physics at the NSCL. “We’ve now seen a link in the chain – one that controlled everything.”

Schatz will discuss these findings at the American Physical Society meeting in Tampa, Fla., Sunday.


The isotope – nickel-78, or Ni-78 – shows up with the standard number of 28 protons, but with 50 neutrons. Because nickel must get rid of so many extra neutrons, this isotope is extremely unstable and does not exist in nature. But, Schatz explained, it did exist briefly in the chain of events that evolved into the elements.

A collaboration of scientists from the United States and Germany at the NSCL recreated Ni-78 by whirling around a stable isotope of krypton gas until it reached high speeds and then firing it into a plate of beryllium metal. Because the NSCL is the nation’s premier rare isotope accelerator, it’s capable of shooting 100 billion krypton atoms a second. Even then, Ni-78 only shows up about twice a day. It would take less powerful accelerators years to run this sort of an experiment, Schatz explained.

Ni-78 only exists for 110 milliseconds – that’s a 10th of a second. Researchers at MSU haven’t been the first to find Ni-78, but they’ve produced 11 occurrences of the isotopes, enough to finally derive its life span, said Paul Hosmer, a doctoral candidate working on the project. That’s always been a missing piece of the puzzle, since the progressive decay of isotopes results in the synthesis of precious metals in exploding stars.

Ni-78 has been found to be considerably quicker to decay – up to three times quicker. That changes the way scientists construct models of how elements were built before the Earth was formed some 4.5 billion years ago.

Unlocking the secrets of Ni-78 is especially exciting to scientists because of a design quirk. Ni-78 is what researchers call “doubly magic.” That means that its number of protons and number of neutrons are in a subatomically tidy package that makes it easier to study.

Hosmer said it’s like studying a bunch of cats and dogs. The groups are a lot easier to keep track of if they’re in a pen. That, basically, is what being doubly magic is – an isotope with the protons and neutrons in defined pens. The 28 protons and 50 neutrons are more stable and less reactive when they’re penned up.

The work is supported by the National Science Foundation through grants PHY 0110253 and PHY 0216783.

Hendrik Schatz | EurekAlert!
Further information:
http://www.msu.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>