Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New isotope gives a glimpse of the origins of precious metals

18.04.2005


The beginnings of precious metals like gold can be traced to the blink of an eye in an exploding star billions of years ago, and scientists at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University have been able to scrutinize a crucial step in that process.



By reproducing the processes inside supernovas in a laboratory, scientists have resurrected an isotope of nickel – one that no longer exists in nature, but is an important link in the birth of the elements. “Every gold atom you find in the gold on your ring, every one of those atoms has gone through such a process,” said Hendrik Schatz, an associate professor of physics at the NSCL. “We’ve now seen a link in the chain – one that controlled everything.”

Schatz will discuss these findings at the American Physical Society meeting in Tampa, Fla., Sunday.


The isotope – nickel-78, or Ni-78 – shows up with the standard number of 28 protons, but with 50 neutrons. Because nickel must get rid of so many extra neutrons, this isotope is extremely unstable and does not exist in nature. But, Schatz explained, it did exist briefly in the chain of events that evolved into the elements.

A collaboration of scientists from the United States and Germany at the NSCL recreated Ni-78 by whirling around a stable isotope of krypton gas until it reached high speeds and then firing it into a plate of beryllium metal. Because the NSCL is the nation’s premier rare isotope accelerator, it’s capable of shooting 100 billion krypton atoms a second. Even then, Ni-78 only shows up about twice a day. It would take less powerful accelerators years to run this sort of an experiment, Schatz explained.

Ni-78 only exists for 110 milliseconds – that’s a 10th of a second. Researchers at MSU haven’t been the first to find Ni-78, but they’ve produced 11 occurrences of the isotopes, enough to finally derive its life span, said Paul Hosmer, a doctoral candidate working on the project. That’s always been a missing piece of the puzzle, since the progressive decay of isotopes results in the synthesis of precious metals in exploding stars.

Ni-78 has been found to be considerably quicker to decay – up to three times quicker. That changes the way scientists construct models of how elements were built before the Earth was formed some 4.5 billion years ago.

Unlocking the secrets of Ni-78 is especially exciting to scientists because of a design quirk. Ni-78 is what researchers call “doubly magic.” That means that its number of protons and number of neutrons are in a subatomically tidy package that makes it easier to study.

Hosmer said it’s like studying a bunch of cats and dogs. The groups are a lot easier to keep track of if they’re in a pen. That, basically, is what being doubly magic is – an isotope with the protons and neutrons in defined pens. The 28 protons and 50 neutrons are more stable and less reactive when they’re penned up.

The work is supported by the National Science Foundation through grants PHY 0110253 and PHY 0216783.

Hendrik Schatz | EurekAlert!
Further information:
http://www.msu.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>