Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New isotope gives a glimpse of the origins of precious metals

18.04.2005


The beginnings of precious metals like gold can be traced to the blink of an eye in an exploding star billions of years ago, and scientists at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University have been able to scrutinize a crucial step in that process.



By reproducing the processes inside supernovas in a laboratory, scientists have resurrected an isotope of nickel – one that no longer exists in nature, but is an important link in the birth of the elements. “Every gold atom you find in the gold on your ring, every one of those atoms has gone through such a process,” said Hendrik Schatz, an associate professor of physics at the NSCL. “We’ve now seen a link in the chain – one that controlled everything.”

Schatz will discuss these findings at the American Physical Society meeting in Tampa, Fla., Sunday.


The isotope – nickel-78, or Ni-78 – shows up with the standard number of 28 protons, but with 50 neutrons. Because nickel must get rid of so many extra neutrons, this isotope is extremely unstable and does not exist in nature. But, Schatz explained, it did exist briefly in the chain of events that evolved into the elements.

A collaboration of scientists from the United States and Germany at the NSCL recreated Ni-78 by whirling around a stable isotope of krypton gas until it reached high speeds and then firing it into a plate of beryllium metal. Because the NSCL is the nation’s premier rare isotope accelerator, it’s capable of shooting 100 billion krypton atoms a second. Even then, Ni-78 only shows up about twice a day. It would take less powerful accelerators years to run this sort of an experiment, Schatz explained.

Ni-78 only exists for 110 milliseconds – that’s a 10th of a second. Researchers at MSU haven’t been the first to find Ni-78, but they’ve produced 11 occurrences of the isotopes, enough to finally derive its life span, said Paul Hosmer, a doctoral candidate working on the project. That’s always been a missing piece of the puzzle, since the progressive decay of isotopes results in the synthesis of precious metals in exploding stars.

Ni-78 has been found to be considerably quicker to decay – up to three times quicker. That changes the way scientists construct models of how elements were built before the Earth was formed some 4.5 billion years ago.

Unlocking the secrets of Ni-78 is especially exciting to scientists because of a design quirk. Ni-78 is what researchers call “doubly magic.” That means that its number of protons and number of neutrons are in a subatomically tidy package that makes it easier to study.

Hosmer said it’s like studying a bunch of cats and dogs. The groups are a lot easier to keep track of if they’re in a pen. That, basically, is what being doubly magic is – an isotope with the protons and neutrons in defined pens. The 28 protons and 50 neutrons are more stable and less reactive when they’re penned up.

The work is supported by the National Science Foundation through grants PHY 0110253 and PHY 0216783.

Hendrik Schatz | EurekAlert!
Further information:
http://www.msu.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>