Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signatures of the first stars

15.04.2005


A primitive star with extremely low iron content has been discovered by an international research team from Sweden, Japan, Germany, USA, Australia and Great Britain. The results are published in Nature online this week.

In 2001, the giant star HE0107-5240 was discovered among a large number of stars examined as part of the Hamburg/ESO* survey. Detailed studies revealed that the star had by far the lowest iron content ever recorded - 200 000 times lower than the Sun. Previously, only stars with iron contents up to 10 000 times lower than the solar value were known. Recently, a second star was discovered with similar iron content, designated HE1327-2326.

- These two stars are the most chemically primitive stars known, and therefore provide information on the nature of the first objects that formed in the Universe after the Big Bang, Paul Barklem from Uppsala university, Sweden, says.



Notably, HE1327-2326 is not a giant but a dwarf or sub-giant star, meaning that it is comparatively unevolved. The abundance of some chemical elements in evolved giant stars may have been altered by processes occurring during the star’s evolution; however, in an unevolved dwarf or sub-giant star we expect that the chemical composition is close to the original composition of the gas from which the star formed.

Analysis of the spectra for both stars, obtained with the world’s largest telescopes, allows the chemical composition of each star to be determined. The stars’ chemical abundances show similarities, such as large abundances of carbon and nitrogen, which suggest that these two stars may have formed in a similar way. The detailed interpretation of the chemical signatures of these two stars, and similar stars for which we continue to search, should help us to understand exactly how the first generations of stars were formed, and which elements were produced when they ended their lives in supernova explosions.

* ESO = European Southern Observatory

Anneli Waara | alfa
Further information:
http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v434/n7035/abs/nature03455_fs.html

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>