Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signatures of the first stars

15.04.2005


A primitive star with extremely low iron content has been discovered by an international research team from Sweden, Japan, Germany, USA, Australia and Great Britain. The results are published in Nature online this week.

In 2001, the giant star HE0107-5240 was discovered among a large number of stars examined as part of the Hamburg/ESO* survey. Detailed studies revealed that the star had by far the lowest iron content ever recorded - 200 000 times lower than the Sun. Previously, only stars with iron contents up to 10 000 times lower than the solar value were known. Recently, a second star was discovered with similar iron content, designated HE1327-2326.

- These two stars are the most chemically primitive stars known, and therefore provide information on the nature of the first objects that formed in the Universe after the Big Bang, Paul Barklem from Uppsala university, Sweden, says.



Notably, HE1327-2326 is not a giant but a dwarf or sub-giant star, meaning that it is comparatively unevolved. The abundance of some chemical elements in evolved giant stars may have been altered by processes occurring during the star’s evolution; however, in an unevolved dwarf or sub-giant star we expect that the chemical composition is close to the original composition of the gas from which the star formed.

Analysis of the spectra for both stars, obtained with the world’s largest telescopes, allows the chemical composition of each star to be determined. The stars’ chemical abundances show similarities, such as large abundances of carbon and nitrogen, which suggest that these two stars may have formed in a similar way. The detailed interpretation of the chemical signatures of these two stars, and similar stars for which we continue to search, should help us to understand exactly how the first generations of stars were formed, and which elements were produced when they ended their lives in supernova explosions.

* ESO = European Southern Observatory

Anneli Waara | alfa
Further information:
http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v434/n7035/abs/nature03455_fs.html

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>