Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Trash Turbulence Lab & Turn Pleasant Stream Into Raging Torrent

14.04.2005


Researchers at the University of Warwick have trashed the world’s biggest turbulence lab by turning a pleasant stream into a raging torrent - but they say their actions will lead to new understandings in one of the main unsolved problems in physics- turbulence.



Turbulence is one of the main unsolved problems in physics. Turbulent systems fluctuate wildly and understanding this will also help us understand (and put a number on the likelihood of) extreme events in other systems that look the same in terms of the mathematics, such as the weather, and stock market prices.

It is technically very challenging to study turbulence on earth, either in the laboratory or on even the largest computers that are available. A very large experiment is needed, and so researchers have turned to space to use the whole solar system as a turbulence laboratory. The solar system is filled by the sun’s expanding atmosphere - the solar wind, we see its effects directly here on earth as "space weather" (the northern lights). The solar wind also effects how cosmic rays reach the earth, which may have important consequences for earth weather and climate change.


A familiar example of turbulence is a stream flowing over a weir. A trick often used to study this is to follow a "passive scalar" - an element of the flow that follows the flow but does not cause or suffer significant change. In the case of a stream a passive scalar might be a leaf floating downstream. In the case of the solar wind it was hoped that the density of the wind is passive, allowing researchers to use a relatively simple set of mathematical tools to model the turbulence.

However new results about to appear in Physics Review Letters by researchers at the University of Warwick has shown that the density in the solar wind behaves less like a leaf in a stream and more like a pile of enormous boulders and tree trunks being smashed along a raging torrent of water.

The research by Dr Bogdan Hnat, Professor Sandra Chapman, and Professor George Rowlands at The University of Warwick’s Department of Physics, and which drew on data from the NASA ACE satellite indicates that turbulence scientists will have to abandon using the density of the solar wind as their "passive scalar" leaf and seek more complex solutions to their problems.

Prof. Sandra Chapman | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>