Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Trash Turbulence Lab & Turn Pleasant Stream Into Raging Torrent

14.04.2005


Researchers at the University of Warwick have trashed the world’s biggest turbulence lab by turning a pleasant stream into a raging torrent - but they say their actions will lead to new understandings in one of the main unsolved problems in physics- turbulence.



Turbulence is one of the main unsolved problems in physics. Turbulent systems fluctuate wildly and understanding this will also help us understand (and put a number on the likelihood of) extreme events in other systems that look the same in terms of the mathematics, such as the weather, and stock market prices.

It is technically very challenging to study turbulence on earth, either in the laboratory or on even the largest computers that are available. A very large experiment is needed, and so researchers have turned to space to use the whole solar system as a turbulence laboratory. The solar system is filled by the sun’s expanding atmosphere - the solar wind, we see its effects directly here on earth as "space weather" (the northern lights). The solar wind also effects how cosmic rays reach the earth, which may have important consequences for earth weather and climate change.


A familiar example of turbulence is a stream flowing over a weir. A trick often used to study this is to follow a "passive scalar" - an element of the flow that follows the flow but does not cause or suffer significant change. In the case of a stream a passive scalar might be a leaf floating downstream. In the case of the solar wind it was hoped that the density of the wind is passive, allowing researchers to use a relatively simple set of mathematical tools to model the turbulence.

However new results about to appear in Physics Review Letters by researchers at the University of Warwick has shown that the density in the solar wind behaves less like a leaf in a stream and more like a pile of enormous boulders and tree trunks being smashed along a raging torrent of water.

The research by Dr Bogdan Hnat, Professor Sandra Chapman, and Professor George Rowlands at The University of Warwick’s Department of Physics, and which drew on data from the NASA ACE satellite indicates that turbulence scientists will have to abandon using the density of the solar wind as their "passive scalar" leaf and seek more complex solutions to their problems.

Prof. Sandra Chapman | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>