Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Trash Turbulence Lab & Turn Pleasant Stream Into Raging Torrent

14.04.2005


Researchers at the University of Warwick have trashed the world’s biggest turbulence lab by turning a pleasant stream into a raging torrent - but they say their actions will lead to new understandings in one of the main unsolved problems in physics- turbulence.



Turbulence is one of the main unsolved problems in physics. Turbulent systems fluctuate wildly and understanding this will also help us understand (and put a number on the likelihood of) extreme events in other systems that look the same in terms of the mathematics, such as the weather, and stock market prices.

It is technically very challenging to study turbulence on earth, either in the laboratory or on even the largest computers that are available. A very large experiment is needed, and so researchers have turned to space to use the whole solar system as a turbulence laboratory. The solar system is filled by the sun’s expanding atmosphere - the solar wind, we see its effects directly here on earth as "space weather" (the northern lights). The solar wind also effects how cosmic rays reach the earth, which may have important consequences for earth weather and climate change.


A familiar example of turbulence is a stream flowing over a weir. A trick often used to study this is to follow a "passive scalar" - an element of the flow that follows the flow but does not cause or suffer significant change. In the case of a stream a passive scalar might be a leaf floating downstream. In the case of the solar wind it was hoped that the density of the wind is passive, allowing researchers to use a relatively simple set of mathematical tools to model the turbulence.

However new results about to appear in Physics Review Letters by researchers at the University of Warwick has shown that the density in the solar wind behaves less like a leaf in a stream and more like a pile of enormous boulders and tree trunks being smashed along a raging torrent of water.

The research by Dr Bogdan Hnat, Professor Sandra Chapman, and Professor George Rowlands at The University of Warwick’s Department of Physics, and which drew on data from the NASA ACE satellite indicates that turbulence scientists will have to abandon using the density of the solar wind as their "passive scalar" leaf and seek more complex solutions to their problems.

Prof. Sandra Chapman | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>