Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Termite guts can save the planet,’ says Nobel laureate

14.04.2005


The way termite guts process food could teach scientists how to produce pollution-free energy and help solve the world’s imminent energy crisis. Speaking at the Institute of Physics conference Physics 2005 in Warwick today, Nobel laureate Steven Chu urged scientists to turn their attention to finding an environmentally friendly form of fuel. In an impassioned plea to some of the world’s brightest minds, he explained how he’s leading by example, and encouraged others to join the effort which "may already be too late."



Chu, who shared the Nobel Prize for Physics in 1997, has begun studying termite guts – one place in nature where a key hurdle for carbon-neutral energy supply has already been solved. Termite guts take indigestible cellulose, which makes up the bulk of all plant material grown on earth, and convert it to ethanol, which even today is a versatile and popular fuel.

Chu described how he decided to leave the richly-funded precincts of Stanford University to become Director of the Lawrence Berkeley Labs to kick-start the effort. He has been cajoling his new colleagues, including 56 members of the prestigious National Academy of Sciences, to realise the gravity of the problem and shift the focus of their research. And, he says, it’s beginning to work.


The US already subsidises farmers to grow corn to turn into ethanol, but $7bn in the past decade has been wasted because the process isn’t carbon-neutral. "From the point of view of the environment," explains Chu, "it would be better if we just burnt oil."

"But carbon-neutral energy sources are achievable. A world population of 9 billion, the predicted peak in population, could be fed with less than one third of the planet’s cultivable land area. Some of the rest could be dedicated to growing crops for energy. But the majority of all plant matter is cellulose – a solid, low-grade fuel about as futuristic as burning wood. If scientists can convert cellulose into liquid fuels like ethanol, the world’s energy supply and storage problems could both be solved at a stroke."

This is where the termite guts come in. A billion years of evolution have produced a highly efficient factory for turning cellulose into ethanol, unlike anything which humans can yet design. By exploiting these tricks, says Chu, we can use biology as a solution to a pressing world problem.

Nuclear fission may be the holy grail, but in the 50 years since it was first proposed, the predicted time-to-market has grown ever more distant. Solar and wind power look appealing, but mankind has not yet discovered how to store electricity on a large scale. Ethanol – a chemical fuel which would release no more carbon than it took to produce, would be the solution.

Immense funding is made available to cure the "diseases of rich people" such as cancer and heart disease, says Chu. "If we can’t cure cancer in 50 years," he says, "it will be tragic but life will go on. But if we can’t develop carbon-neutral fuel sources, life will change for everyone."

David Reid | EurekAlert!
Further information:
http://www.iop.org
http://www.einsteinyear.org

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>