Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


’Termite guts can save the planet,’ says Nobel laureate


The way termite guts process food could teach scientists how to produce pollution-free energy and help solve the world’s imminent energy crisis. Speaking at the Institute of Physics conference Physics 2005 in Warwick today, Nobel laureate Steven Chu urged scientists to turn their attention to finding an environmentally friendly form of fuel. In an impassioned plea to some of the world’s brightest minds, he explained how he’s leading by example, and encouraged others to join the effort which "may already be too late."

Chu, who shared the Nobel Prize for Physics in 1997, has begun studying termite guts – one place in nature where a key hurdle for carbon-neutral energy supply has already been solved. Termite guts take indigestible cellulose, which makes up the bulk of all plant material grown on earth, and convert it to ethanol, which even today is a versatile and popular fuel.

Chu described how he decided to leave the richly-funded precincts of Stanford University to become Director of the Lawrence Berkeley Labs to kick-start the effort. He has been cajoling his new colleagues, including 56 members of the prestigious National Academy of Sciences, to realise the gravity of the problem and shift the focus of their research. And, he says, it’s beginning to work.

The US already subsidises farmers to grow corn to turn into ethanol, but $7bn in the past decade has been wasted because the process isn’t carbon-neutral. "From the point of view of the environment," explains Chu, "it would be better if we just burnt oil."

"But carbon-neutral energy sources are achievable. A world population of 9 billion, the predicted peak in population, could be fed with less than one third of the planet’s cultivable land area. Some of the rest could be dedicated to growing crops for energy. But the majority of all plant matter is cellulose – a solid, low-grade fuel about as futuristic as burning wood. If scientists can convert cellulose into liquid fuels like ethanol, the world’s energy supply and storage problems could both be solved at a stroke."

This is where the termite guts come in. A billion years of evolution have produced a highly efficient factory for turning cellulose into ethanol, unlike anything which humans can yet design. By exploiting these tricks, says Chu, we can use biology as a solution to a pressing world problem.

Nuclear fission may be the holy grail, but in the 50 years since it was first proposed, the predicted time-to-market has grown ever more distant. Solar and wind power look appealing, but mankind has not yet discovered how to store electricity on a large scale. Ethanol – a chemical fuel which would release no more carbon than it took to produce, would be the solution.

Immense funding is made available to cure the "diseases of rich people" such as cancer and heart disease, says Chu. "If we can’t cure cancer in 50 years," he says, "it will be tragic but life will go on. But if we can’t develop carbon-neutral fuel sources, life will change for everyone."

David Reid | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>