Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Now scientists think you’d be ’roasted’ in a black hole

14.04.2005


Contrary to established scientific thinking, you’d be roasted and not "spaghettified" if you stumbled into a supermassive black hole. New research being presented at the Institute of Physics conference Physics 2005 in Warwick will take a new look at the diet of the universe’s most intriguing object, black holes.



Black holes stand at the very edge of scientific theory. Most scientists believe they exist, although many of their theories break down under the extreme conditions within. But Professor Andrew Hamilton of the University of Colorado says he knows what you would find inside, and challenges the traditional idea that gravity would cause you death by "spaghettification".

Most people have heard of the event horizon of a black hole, as the point of no return. But astronomically realistic black holes are more complex and should have two horizons, an outer and an inner. In the bizarre physics of black holes, time and space are exchanged when you cross an event horizon, but at a second horizon they would switch back again. Travelling into a black hole, you would therefore pass through a strange region where space is falling inward faster than light, before finally entering a zone of normal space at the core. It’s this core of normal space which Professor Hamilton has been working on.


A so-called singularity sits at the centre of the core, swallowing up matter. But according to Professor Hamilton, the strange laws of general relativity temper its appetite. If the singularity ate too quickly, it would become gravitationally repulsive, so instead, matter piles up in a hot, dense plasma filling the core of the black hole and siphoning gradually into the singularity.

Depending on the size of the black hole, this plasma could be the cause of a space traveller’s demise. Most books will tell you that under the extreme gravitational conditions of a black hole, your feet would experience gravity more strongly than your head, and your body would be stretched out like spaghetti. For a small black hole with the mass of several suns, this should still be true. But for a supermassive black hole weighing millions or billions of suns, explains Professor Hamilton, the tidal forces which cause spaghettification are relatively weak. You would instead be roasted by the heat of the plasma.

Professor Andrew Hamilton is Professor of Astrophysics at the Department of Astrophysical and Planetary Sciences, University of Colorado.

David Reid | EurekAlert!
Further information:
http://www.iop.org
http://www.colorado.edu

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>