Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Now scientists think you’d be ’roasted’ in a black hole


Contrary to established scientific thinking, you’d be roasted and not "spaghettified" if you stumbled into a supermassive black hole. New research being presented at the Institute of Physics conference Physics 2005 in Warwick will take a new look at the diet of the universe’s most intriguing object, black holes.

Black holes stand at the very edge of scientific theory. Most scientists believe they exist, although many of their theories break down under the extreme conditions within. But Professor Andrew Hamilton of the University of Colorado says he knows what you would find inside, and challenges the traditional idea that gravity would cause you death by "spaghettification".

Most people have heard of the event horizon of a black hole, as the point of no return. But astronomically realistic black holes are more complex and should have two horizons, an outer and an inner. In the bizarre physics of black holes, time and space are exchanged when you cross an event horizon, but at a second horizon they would switch back again. Travelling into a black hole, you would therefore pass through a strange region where space is falling inward faster than light, before finally entering a zone of normal space at the core. It’s this core of normal space which Professor Hamilton has been working on.

A so-called singularity sits at the centre of the core, swallowing up matter. But according to Professor Hamilton, the strange laws of general relativity temper its appetite. If the singularity ate too quickly, it would become gravitationally repulsive, so instead, matter piles up in a hot, dense plasma filling the core of the black hole and siphoning gradually into the singularity.

Depending on the size of the black hole, this plasma could be the cause of a space traveller’s demise. Most books will tell you that under the extreme gravitational conditions of a black hole, your feet would experience gravity more strongly than your head, and your body would be stretched out like spaghetti. For a small black hole with the mass of several suns, this should still be true. But for a supermassive black hole weighing millions or billions of suns, explains Professor Hamilton, the tidal forces which cause spaghettification are relatively weak. You would instead be roasted by the heat of the plasma.

Professor Andrew Hamilton is Professor of Astrophysics at the Department of Astrophysical and Planetary Sciences, University of Colorado.

David Reid | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>