Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotech advance makes carbon nanotubes more useful

12.04.2005


Researchers at UCSD have made carbon nanotubes bent in sharp predetermined angles, a technical advance that could lead to use of the long, thin cylinders of carbon as tiny springs, tips for atomic force microscopes, smaller electrical connectors in integrated circuits, and in many other nanotechnology applications. In a paper published in the April 7, 2005, issue of the Journal of Physical Chemistry B, Sungho Jin, a professor of materials science at UCSD’s Jacobs School of Engineering, reported a technique to create bent nanotubes by manipulating the electric field during their growth and adjusting other conditions.



"Controlling nanotube geometry is necessary to realize the many promised applications of these materials," said Jin, a professor in the Jacobs School’s Department of Mechanical and Aerospace Engineering. “Our new results show that we have taken a step toward understanding how to shape nanotubes to our specifications, an achievement that could greatly enhance their value to society.”

Joseph AuBuchon, a graduate student in Jin’s group, exploited the strong alignment of nanotube growth with the direction of electric field lines. After growing an aligned array of straight nanotubes, AuBuchon switched the orientation of electric field lines 90 degrees to make L-shaped tubes. He then made more orientation changes to make zigzags. AuBuchon won a Gold Graduate Student Award and Best Poster Award for presenting details of his nanotube research at the spring 2005 meeting of the Materials Research Society, which was held March 28‑April 1 in San Francisco.


Carbon nanotubes hold great promise because of their exceptionally strong mechanical properties, their ability to efficiently carry high densities of electric current, and other unique electrical and chemical properties. AuBuchon used a plasma enhanced chemical vapor deposition technique to grow about 2 billion nanotubes per square centimeter on silicon wafers seeded with nickel catalyst nanoparticles.

Nanotubes, which are roughly 10,000 times smaller than a human hair, can be made almost perfectly straight in special chambers of gas plasma. Successfully shaping nanotubes has been a goal of materials scientists since a Japanese researcher discovered them in 1991. However, the creation of sharp bends is difficult because once a growth phase of nanotubes is interrupted, the catalyst particles at the tips of the growing nanotubes become encased with carbon, blocking future growth. A key to Jin and AuBuchon’s successful growth of bent nanotubes involved the discovery of a technique to prevent the unwanted carbon from encasing the catalyst between growth steps.

“It’s hard to imagine all the possible uses for bent nanotubes, but we think one of them might be to improve the performance of atomic force microscopy,” said Jin. Atomic force microscopy uses a mechanical probe to magnify rigid materials at the atomic scale to produce 3-D images of the surface.

Jin also noted that nanotubes may be used as replacements for conventional electrical connectors made of metal wires in ever smaller integrated circuits. Such wires are roughly 70 nanometers wide, but nanotube connectors as thin as 1.2 nanometers are theoretically capable of supplying sufficiently large electric currents to integrated circuits.

In addition, Jin said the interconnections between microcircuit devices are often made with metal alloy solders. Unfortunately, these solders expand and contract at rates different than those of the microcircuit device, and cycles of heating and cooling cause fatigue cracking at interconnections. “If these interconnections were made with electrically conducting nanotube zigzags, which also act as springs, not only would we need much less space to make these interconnections, but the thermal-expansion mismatch also wouldn’t matter because the interconnections are flexible,” says Jin. “We call it the compliant nano-interconnect.”

Using a modification of the approach to make zigzag nanotubes, Jin and AuBuchon also produced parallel arrays of T- and Y-shaped nanotubes that could be used to make fuel cells more efficient. These arrays of parallel, branched nanotubes could act as a 3-D scaffolding for platinum catalyst particles. High densities of platinum catalyst-tipped nanotubes could enable fuel cells produce electricity more efficiently.

Joseph F. AuBuchon, Li-Han Chen, and Sungho Jin, "Control of Carbon Capping for Regrowth of Aligned Carbon Nanotubes" (2005). Journal of Physical Chemistry B. 109, pp 6044-6048.

Rex Graham | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>