Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical computer made from frozen light

12.04.2005


Scientists learn to process information with ’frozen light’



Scientists at Harvard University have shown how ultra-cold atoms can be used to freeze and control light to form the "core" – or central processing unit – of an optical computer. Optical computers would transport information ten times faster than traditional electronic devices, smashing the intrinsic speed limit of silicon technology.

This new research could be a major breakthrough in the quest to create super-fast computers that use light instead of electrons to process information. Professor Lene Hau is one of the world’s foremost authorities on "slow light". Her research group became famous for slowing down light, which normally travels at 186,000 miles per second, to less than the speed of a bicycle. Using the same apparatus, which contains a cloud of ultra-cold sodium atoms, they have even managed to freeze light altogether. Professor Hau says this could have applications in memory storage for a future generation of optical computers.


But Professor Hau’s most recent research addresses the issue of optical computers head-on. She has calculated that ultra-cold atoms known as Bose-Einstein condensates (BECs) can be used to perform "controlled coherent processing" with light. In ordinary matter, the amplitude and phase of a light pulse would be smeared out, and any information content would be destroyed. Hau’s work on slow light, however, has proved experimentally that these attributes can be preserved in a BEC. Such a device might one day become the CPU of an optical computer.

Traditional electronic computers are advancing ever closer to their theoretical limits for size and speed. Some scientists believe that optical computing will one day unleash a new revolution in smaller and faster computers.

Professor Lene Hau is Gordon McKay Professor of Applied Physics & Professor of Physics at Harvard University.

David Reid | EurekAlert!
Further information:
http://www.deas.harvard.edu/haulab/
http://www.physics2005.iop.org
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>