Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sacred constant might be changing

11.04.2005


Scientists discover one of the constants of the universe might not be constant



Physical constants are one of the cornerstones of physics – sacred numbers which we know to be fixed – but what if some of these constants are changing? Speaking at the Institute of Physics conference Physics 2005, Dr Michael Murphy of Cambridge University will discuss the "fine structure constant" – one of the critical numbers in the universe which seems to be precisely tuned for life to exist – and suggest that it might not be constant after all.

Dr Murphy has used the largest optical telescope in the world, the Keck telescope on Mauna Kea in Hawaii, to study light from distant quasars. This light has been travelling across the universe for billions of years, and seems to show that the fine structure constant, often known as "alpha", may be varying over time.


The fine structure constant governs the electromagnetic force which holds all atoms and molecules together. Scientists have known for many years that if its value was slightly different, life could not exist. Only the very tiniest changes over time could be tolerated, and most scientists believe that alpha today is the same as it always has been.

The constant also affects the absorption fingerprint of atoms, which can be detected when light shines through gas clouds. Murphy has used quasars as incredibly distant light sources, whose light encounters gas clouds on its way to Earth. The light takes time to reach Earth, so he sees the fingerprints as they were billions of years ago. By comparing these fingerprints with those obtained in experiments on Earth, he concludes that alpha has changed by about one part in two-hundred-thousand during the last 10 billion years.

Other researchers have published results which suggest that alpha does not change. However Dr Murphy’s work is the most detailed survey ever performed. He says that the internal checks in his method, which other research groups did not use, make this the most reliable measurement to date.

Murphy is careful not to claim that the case is closed, and he says that nobody can really say that alpha varies until another type of experiment has confirmed it. "We are claiming something extraordinary here," says Murphy, "and the evidence, though strong, is not yet extraordinary enough."

Dr Michael Murphy is a Research Associate at the Institute of Astronomy in the University of Cambridge, and a Research Fellow of Darwin College, Cambridge.

David Reid | EurekAlert!
Further information:
http://www.iop.org
http://www.physics2005.iop.org

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>