Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sacred constant might be changing

11.04.2005


Scientists discover one of the constants of the universe might not be constant



Physical constants are one of the cornerstones of physics – sacred numbers which we know to be fixed – but what if some of these constants are changing? Speaking at the Institute of Physics conference Physics 2005, Dr Michael Murphy of Cambridge University will discuss the "fine structure constant" – one of the critical numbers in the universe which seems to be precisely tuned for life to exist – and suggest that it might not be constant after all.

Dr Murphy has used the largest optical telescope in the world, the Keck telescope on Mauna Kea in Hawaii, to study light from distant quasars. This light has been travelling across the universe for billions of years, and seems to show that the fine structure constant, often known as "alpha", may be varying over time.


The fine structure constant governs the electromagnetic force which holds all atoms and molecules together. Scientists have known for many years that if its value was slightly different, life could not exist. Only the very tiniest changes over time could be tolerated, and most scientists believe that alpha today is the same as it always has been.

The constant also affects the absorption fingerprint of atoms, which can be detected when light shines through gas clouds. Murphy has used quasars as incredibly distant light sources, whose light encounters gas clouds on its way to Earth. The light takes time to reach Earth, so he sees the fingerprints as they were billions of years ago. By comparing these fingerprints with those obtained in experiments on Earth, he concludes that alpha has changed by about one part in two-hundred-thousand during the last 10 billion years.

Other researchers have published results which suggest that alpha does not change. However Dr Murphy’s work is the most detailed survey ever performed. He says that the internal checks in his method, which other research groups did not use, make this the most reliable measurement to date.

Murphy is careful not to claim that the case is closed, and he says that nobody can really say that alpha varies until another type of experiment has confirmed it. "We are claiming something extraordinary here," says Murphy, "and the evidence, though strong, is not yet extraordinary enough."

Dr Michael Murphy is a Research Associate at the Institute of Astronomy in the University of Cambridge, and a Research Fellow of Darwin College, Cambridge.

David Reid | EurekAlert!
Further information:
http://www.iop.org
http://www.physics2005.iop.org

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>