Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Era of galaxy and black hole growth spurt discovered

07.04.2005


Distant galaxies undergoing intense bursts of star formation have been shown by NASA’s Chandra X-ray Observatory to be fertile growing grounds for the largest black holes in the Universe. Collisions between galaxies in the early Universe may be the ultimate cause for both the accelerated star formation and black hole growth.



By combining the deepest X-ray image ever obtained with submillimeter and optical observations, an international team of scientists has found evidence that some extremely luminous adolescent galaxies and their central black holes underwent a phenomenal spurt of growth more than 10 billion years ago. This concurrent black hole and galaxy growth spurt is only seen in these galaxies and may have set the stage for the birth of quasars – distant galaxies that contain the largest and most active black holes in the Universe.

"The extreme distances of these galaxies allow us to look back in time, and take a snapshot of how today’s largest galaxies looked when they were producing most of their stars and growing black holes, " said David Alexander of the University of Cambridge, UK, and lead author of a paper in the April 7, 2005 issue of Nature that describes this work.


The galaxies studied by Alexander and his colleagues are known as submillimeter galaxies, so-called because they were originally identified by the James Clerk Maxwell submillimeter telescope (JCMT) on Mauna Kea in Hawaii. The submillimeter observations along with optical data from Keck, also on Mauna Kea, indicate these galaxies had an unusually large amount of gas. The gas in each galaxy was forming into stars at a rate of about one per day, or 100 times the present rate in the Milky Way galaxy. The Chandra X-ray data show that the supermassive black holes in the galaxies were also growing at the same time.

These galaxies are very faint and it is only with the deepest observations of the Universe that they can be detected at all. "The deeper we look into the Universe with Chandra, the more fascinating things we find" says Niel Brandt of Penn State University in University Park. "Who knows what nature has in store for us as we push the boundaries yet further."

The X-ray observations also showed that the black holes are surrounded by a dense shroud of gas and dust. This is probably the material that will be consumed by the growing black holes.

Hubble Space Telescope observations indicate that most of the submillimeter galaxies are actually two galaxies that are colliding and merging. Recent sophisticated computer simulations performed by Tiziana Di Matteo of Carnegie Mellon University in Pittsburgh, Penn., and her collaborators have shown that such mergers drive gas toward the central regions of galaxies, triggering a burst of star formation and providing fuel for the growth of a central black hole. "It is exciting that these recent observations are in good agreement with our simulation," says Di Matteo, "We seem to be converging on a consistent picture of galaxy formation with both observations and theory." In particular, this work will help scientists to understand the observed link in the present epoch between the total mass of stars in the central bulges of large galaxies and the size of their central, supermassive black holes.

The James Clerk Maxwell Telescope (JCMT) is operated on behalf of the United Kingdom, Canada & Netherlands by the Joint Astronomy Centre in Hilo, Hawaii. With its 15-meter (50-foot) diameter dish the JCMT detects light with "submillimeter" wavelengths, between infrared light and radio waves on the wavelength scale. The W. M. Keck Observatory is operated by the California Association for Research in Astronomy in Kamuela, Hawaii.

NASA’s Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate, Washington. Northrop Grumman of Redondo Beach, Calif., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

Megan Watzke | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>