Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers Expect To Be "Dazled" By Views Of Ancient Universe

06.04.2005


For the last five years, a team of astronomers at the University of Cambridge and the Anglo-Australian Observatory in Sydney, Australia, has been building a special instrument to search for the most distant galaxies in the Universe.



Known as DAZLE (Dark Age Redshift Lyman Explorer), the 21st century “time machine” will be able to look back 12,800 million years to the end of the Dark Ages, when the very first stars were appearing from the gloom that dominated the Universe shortly after the Big Bang.

On Wednesday 6 April, Dr. Richard McMahon (Institute of Astronomy, University of Cambridge) will be describing to the RAS National Astronomy Meeting in Birmingham the scientific contribution that DAZLE will make. On Thursday, Dr. Ian Parry will speak about the technical challenges of building such a pioneering instrument.


“DAZLE is a special, highly sensitive, imaging instrument that detects infrared light,” said McMahon. “It has been designed to search for galaxies that emit no radiation at optical wavelengths but emit light at infra-red wavelengths that are invisible to the human eye.”

DAZLE is optimised to detect faint emission lines in the spectra of distant galaxies. These lines are very hard to detect because of the intense infrared emission created high in the Earth’s atmosphere. DAZLE uses specially designed filters that block out 99.99% of the glow from the Earth’s atmosphere. Astronomers intend to use DAZLE to detect the most distant galaxies known to humankind by searching for redshifted light emissions from hydrogen gas that has been heated by very hot young stars.

The first observing run with DAZLE is planned to take place later this year on the European Southern Observatory’s 8-metre Very Large Telescope, located in Chile. In this first search, DAZLE will search a narrow window in the sky at an infrared wavelength that corresponds to a redshift of 7.8, equivalent to 12.8 billion light years. This means that the light left these distant galaxies when the Universe was 12.8 billion years younger than it is today - when the Universe was 500 times smaller in volume.

After the search at a redshift of 7.8 is successful, the team then plan to use DAZLE to search for galaxies in another window in the sky emission at a redshift of 8.8, equivalent to a distance of 12.9 billion light years.

“Previous attempts to look back this far in time have so far been unsuccessful, so this could be a groundbreaking observation,” said McMahon.

“At this early time in the history of the Universe, a major change occurred in the gas in the Universe,” he added.

“After the Big Bang, the Universe expanded and cooled down to a temperature of -270C, close to absolute zero. However, since humans exist we know that the Universe must have been heated up again. We shall use DAZLE to try to determine exactly when the Universe was heated up for the second time, during the birth of the first stars.”

"Astronomers believe that this reheating was carried out by ultraviolet light from young hot stars in small galaxies,” explained Dr. Anthony Horton (University of Cambridge). “Stars in these baby galaxies formed some of the chemical elements - such as carbon, nitrogen, and iron - that are in our bodies.”

“DAZLE will be able to detect small, infant galaxies which are giving birth to stars – perhaps one hundredth the size of the Milky Way. DAZLE can detect galaxies which are forming stars at a rate where they are converting a mass of hydrogen and helium equal to the Sun into new stars each year,” said Dr. Ian Parry, another of the Cambridge team.

CONTACTS

On Wednesday 6 April, Dr. McMahon can be contacted via the NAM press office (see above).
On Thursday 7 April, Dr. Parry can be contacted via the NAM press office (see above).

Normal contact details:

Dr. Richard G. McMahon
Institute of Astronomy
University of Cambridge
Madingley Rd
Cambridge, CB3 OHA
Tel: +44-(0)1223-337519 or +44 (0)1223-337516
Mobile: +44-(0)7885-409019
E-mail: rgm@ast.cam.ac.uk

Dr. Ian Parry
Institute of Astronomy
University of Cambridge
Tel: +44-(0)1223-337092
Mobile +44-(0)7968-960344
E-mail: irp@ast.cam.ac.uk

FURTHER INFORMATION AND IMAGES CAN BE FOUND ON THE WEB AT:

University of Cambridge DAZLE web page:
http://www.ast.cam.ac.uk/~rgm/press/2005/dazle-nam2005/

| alfa
Further information:
http://www.ast.cam.ac.uk/~rgm/press/2005/dazle-nam2005/

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>