Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers Expect To Be "Dazled" By Views Of Ancient Universe

06.04.2005


For the last five years, a team of astronomers at the University of Cambridge and the Anglo-Australian Observatory in Sydney, Australia, has been building a special instrument to search for the most distant galaxies in the Universe.



Known as DAZLE (Dark Age Redshift Lyman Explorer), the 21st century “time machine” will be able to look back 12,800 million years to the end of the Dark Ages, when the very first stars were appearing from the gloom that dominated the Universe shortly after the Big Bang.

On Wednesday 6 April, Dr. Richard McMahon (Institute of Astronomy, University of Cambridge) will be describing to the RAS National Astronomy Meeting in Birmingham the scientific contribution that DAZLE will make. On Thursday, Dr. Ian Parry will speak about the technical challenges of building such a pioneering instrument.


“DAZLE is a special, highly sensitive, imaging instrument that detects infrared light,” said McMahon. “It has been designed to search for galaxies that emit no radiation at optical wavelengths but emit light at infra-red wavelengths that are invisible to the human eye.”

DAZLE is optimised to detect faint emission lines in the spectra of distant galaxies. These lines are very hard to detect because of the intense infrared emission created high in the Earth’s atmosphere. DAZLE uses specially designed filters that block out 99.99% of the glow from the Earth’s atmosphere. Astronomers intend to use DAZLE to detect the most distant galaxies known to humankind by searching for redshifted light emissions from hydrogen gas that has been heated by very hot young stars.

The first observing run with DAZLE is planned to take place later this year on the European Southern Observatory’s 8-metre Very Large Telescope, located in Chile. In this first search, DAZLE will search a narrow window in the sky at an infrared wavelength that corresponds to a redshift of 7.8, equivalent to 12.8 billion light years. This means that the light left these distant galaxies when the Universe was 12.8 billion years younger than it is today - when the Universe was 500 times smaller in volume.

After the search at a redshift of 7.8 is successful, the team then plan to use DAZLE to search for galaxies in another window in the sky emission at a redshift of 8.8, equivalent to a distance of 12.9 billion light years.

“Previous attempts to look back this far in time have so far been unsuccessful, so this could be a groundbreaking observation,” said McMahon.

“At this early time in the history of the Universe, a major change occurred in the gas in the Universe,” he added.

“After the Big Bang, the Universe expanded and cooled down to a temperature of -270C, close to absolute zero. However, since humans exist we know that the Universe must have been heated up again. We shall use DAZLE to try to determine exactly when the Universe was heated up for the second time, during the birth of the first stars.”

"Astronomers believe that this reheating was carried out by ultraviolet light from young hot stars in small galaxies,” explained Dr. Anthony Horton (University of Cambridge). “Stars in these baby galaxies formed some of the chemical elements - such as carbon, nitrogen, and iron - that are in our bodies.”

“DAZLE will be able to detect small, infant galaxies which are giving birth to stars – perhaps one hundredth the size of the Milky Way. DAZLE can detect galaxies which are forming stars at a rate where they are converting a mass of hydrogen and helium equal to the Sun into new stars each year,” said Dr. Ian Parry, another of the Cambridge team.

CONTACTS

On Wednesday 6 April, Dr. McMahon can be contacted via the NAM press office (see above).
On Thursday 7 April, Dr. Parry can be contacted via the NAM press office (see above).

Normal contact details:

Dr. Richard G. McMahon
Institute of Astronomy
University of Cambridge
Madingley Rd
Cambridge, CB3 OHA
Tel: +44-(0)1223-337519 or +44 (0)1223-337516
Mobile: +44-(0)7885-409019
E-mail: rgm@ast.cam.ac.uk

Dr. Ian Parry
Institute of Astronomy
University of Cambridge
Tel: +44-(0)1223-337092
Mobile +44-(0)7968-960344
E-mail: irp@ast.cam.ac.uk

FURTHER INFORMATION AND IMAGES CAN BE FOUND ON THE WEB AT:

University of Cambridge DAZLE web page:
http://www.ast.cam.ac.uk/~rgm/press/2005/dazle-nam2005/

| alfa
Further information:
http://www.ast.cam.ac.uk/~rgm/press/2005/dazle-nam2005/

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>