Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feat of experimental acrobatics leads to first synthesis of ultracold molecules

04.04.2005


Achievement could benefit fields of superchemistry, quantum computing



A research team that in 2003 created an exotic new form of matter has now shown for the first time how to arrange that matter into complex molecules.

The experiments--conducted by Cheng Chin, now at the University of Chicago, and his colleagues under the leadership of Rudolf Grimm at Innsbruck University in Austria--may lead to a better scientific understanding of superconductivity and advance a growing new field called superchemistry. In the long term, they may also provide a strategy that could aid the development of quantum computers. "In this field, it’s hard to predict what’s going to happen, because none of this was possible before 2003," said Chin, an Assistant Professor in Physics. Chin, Grimm and five colleagues will report their findings in a future issue of journal Physical Review Letters.


The new form of matter that the Innsbruck University team produced in 2003 is called a Fermion superfluid, which exists only at temperatures hundreds of degrees below zero. Superfluids exhibit characteristics distinctively different from the solids, liquids and gases that dominate everyday life. Most notably, superfluids can flow ceaselessly without any energy loss whatsoever. Science magazine named this work one of the top 10 breakthroughs of 2004.

In creating the Fermion superfluid, the team extended the work that earned the Nobel Prize in Physics for Eric Cornell, Wolfgang Ketterle and Carl Wieman in 2001. Those scientists had succeeded in creating the first Bose-Einstein condensate. Building on the work of Satyendra Nath Bose, Albert Einstein predicted in the 1920s that a special state of matter would form when a group of atoms collapsed into their lowest energy state. In this state now named for them, all of the atoms behave as if they are all one giant atom.

Cornell, Ketterle and Wieman created their Bose-Einstein condensate out of bosons, one of the two major categories of subatomic particles. Bosons carry force, while the other category of particles, fermions, comprise matter. Chin and the Innsbruck team showed in 2003 that, with some difficulty, fermions--in this case, lithium atoms--also can be coaxed into a Bose-Einstein condensate.

"Atoms themselves cannot become condensed. They are not bosons," Chin said. "But once they are paired they become bosons, and you can go to this superfluid state."

The laws of quantum mechanics forbid fermions from condensing. Chin and his colleagues used a technique called Feshbach resonance to bind two atoms into a simple molecule that behaves like a boson. The process is carried out in a magnetic field and resembles the type of electron pairing that causes superconductivity--the unimpeded flow of electricity at temperatures near absolute zero (minus 459.6 degrees Fahrenheit)--in solids.

This type of electron pairing is called Cooper pairing. Cooper pairings are the long-distance marriages of the subatomic world, where electrons are bonded at distances far greater than usual. "We have discovered a handle to adjust the interactions between atoms and between molecules, which allows us to synthesize complex quantum objects," Chin said.

Approximately two years ago, the Innsbruck scientists found a deep and unexpected connection between Bose-Einstein condensates and the bonding of Cooper pairs. They learned that they could use a pair of atoms to simulate the electrons of a Cooper pair. And more importantly, they could control the interactions of the atoms.

In their latest achievement, Chin and his colleagues have learned how to use Feshbach resonance as the control that binds the simple molecules made of cesium atoms into even larger clusters at temperatures near absolute zero.

"Since 2003, the controlled synthesis of simple molecules made of two atoms has opened up new frontiers in the field of ultracold quantum gases," said Rudolf Grimm, a professor of experimental physics at Innsbruck University and a co-author of the Letters article. Their present work now shows that ultracold simple molecules can be merged to form more complex objects consisting of four atoms, he said.

An important feature of this synthesis process is its tenability, Chin said. "In a magnetic field you can experimentally adjust it to any value, so we can control the process."

The synthesis of ultracold molecules is so new, it is difficult to predict potential applications, Chin said. But it puts a new field called superchemistry on a firm experimental footing. In superchemistry, scientists are able to precisely control the pairings and interactions of the atoms and molecules in Bose-Einstein condensates.

"We are physicists, but now our field’s starting to overlap with chemistry," Chin said.

As ultracold molecules are synthesized into complex quantum objects, phenomena hidden at the subatomic scale will now become visible almost to the naked eye. "These objects may open up completely new possibilities to study the rich quantum physics of few-body objects, including chemical reactions in the quantum world," Grimm said.

Control of quantum objects may ultimately lead to the realization of a quantum computer, Chin said. Although possibly still decades from fruition, a quantum computer would work much faster than today’s computers. The idea would be to use atoms in ultracold gas as bits, the basic units of information storage on a computer, with Feshbach resonance controlling their interactions to perform computations.

Chin now is setting up his laboratory at the University of Chicago and plans to continue studying quantum manipulation and computation based on cold atoms and molecules in collaboration with Grimm’s Innsbruck team.

"Based on the speed of progress in this field, I think there probably will be more surprises," Chin said.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>