Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology could promote hydrogen economy

30.03.2005


Say "nanotechnology" and people are likely to think of micro machines or zippy computer chips. But in a new twist, Rutgers scientists are using nanotechnology in chemical reactions that could provide hydrogen for tomorrow’s fuel-cell powered clean energy vehicles.



In a paper to be published April 20 in the Journal of the American Chemical Society, researchers at Rutgers, The State University of New Jersey, describe how they make a finely textured surface of the metal iridium that can be used to extract hydrogen from ammonia, then captured and fed to a fuel cell. The metal’s unique surface consists of millions of pyramids with facets as tiny as five nanometers (five billionths of a meter) across, onto which ammonia molecules can nestle like matching puzzle pieces. This sets up the molecules to undergo complete and efficient decomposition.

"The nanostructured surfaces we’re examining are model catalysts," said Ted Madey, State of New Jersey professor of surface science in the physics department at Rutgers. "They also have the potential to catalyze chemical reactions for the chemical and pharmaceutical industries."


A major obstacle to establishing the "hydrogen economy" is the safe and cost-effective storage and transport of hydrogen fuel. The newly discovered process could contribute to the solution of this problem. Handling hydrogen in its native form, as a light and highly flammable gas, poses daunting engineering challenges and would require building a new fuel distribution infrastructure from scratch.

By using established processes to bind hydrogen with atmospheric nitrogen into ammonia molecules (which are simply one atom of nitrogen and three atoms of hydrogen), the resulting liquid could be handled much like today’s gasoline and diesel fuel. Then using nanostructured catalysts based on the one being developed at Rutgers, pure hydrogen could be extracted under the vehicle’s hood on demand, as needed by the fuel cell, and the remaining nitrogen harmlessly released back into the atmosphere. The carbon-free nature of ammonia would also make the fuel cell catalyst less susceptible to deactivation.

When developing industrial catalysts, scientists and engineers have traditionally focused on how fast they could drive a chemical reaction. In such situations, however, catalysts often drive more than one reaction, yielding unwanted byproducts that have to be separated out. Also, traditional catalysts sometimes lose strength in the reaction process. Madey says that these problems could be minimized by tailoring nanostructured metal surfaces on supported industrial catalysts, making new forms of catalysts that are more robust and selective.

In the journal article, Madey and postdoctoral research fellow Wenhua Chen and physics graduate student Ivan Ermanoski describe how a flat surface of iridium heated in the presence of oxygen changes its shape to make uniform arrays of nanosized pyramids. The structures arise when atomic forces from the adjacent oxygen atoms pull metal atoms into a more tightly ordered crystalline state at temperatures above 300 degrees Celsius (or approximately 600 degrees Fahrenheit). Different annealing temperatures create different sized facets, which affect how well the iridium catalyzes ammonia decomposition. The researchers are performing additional studies to characterize the process more completely.

Carl Blesch | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>