Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quasiparticle Behavior in Bose Quantum Liquids

29.03.2005


Quasiparticles carry energy in condensed matter. In the world of quasiparticle physics, understanding when and how these energy carriers fail opens doors to another level of understanding, and can lead the way to many new and important theories. Scientists at the U. S. Department of Energy’s Brookhaven National Laboratory have discovered the failure point for the quasiparticle construct, the standard model of condensed matter physics. This could have far-reaching implications, for example, in the study of high-temperature superconductors, materials currently under intense scrutiny as a possible replacement for the conventional superconducting materials now used in many facets of everyday life.

At the March 2005 meeting of the American Physical Society, Brookhaven physicist Igor Zaliznyak will explain how he and his colleagues identified the “spectrum endpoint” in a Bose quantum spin liquid, the point at which the quasiparticles are no longer well-defined energy carriers. Zaliznyak will discuss his paper at 1:39 p.m. Friday, March 25, 2005, in Room 515B of the Los Angeles Convention Center.

“Although the quantum-liquid state has been studied for roughly a century, it continues to fascinate physicists,” Zaliznyak said. “We have demonstrated that at higher energies, the Bose quasiparticle description fails because of quasiparticle decay.”



The study of quasiparticles, which govern the properties of quantum liquids, was pioneered by Russian Nobel Prize winning-physicist L.D. Landau. There are two types of quasiparticles, Bose and Fermi, and physicists around the globe are exploring the properties of each type. The Brookhaven experiments, conducted using the triple-axis neutron spectrometer at the National Institutes of Standards and Technology, confirmed that in a particular Bose quantum spin liquid, quasiparticle decay leads to spectrum termination, as was predicted by Landau.

“Landau proposed that at some energy, the quasiparticle description breaks down, and in a generic form this has been known,” Zaliznyak said. “But the extent of the phenomenon and how it reveals itself in real materials hasn’t been clear. We have shown that at twice the minimum excitation energy, known as the spin gap, Bose quasiparticles cease to be defined at all and disappear.”

The Brookhaven experiments studied a quantum liquid found in systems composed of quantum spins in magnetic crystals, specifically an organo-metallic material known as PHCC. The scientists’ neutron scattering measurements demonstrate the occurrence of spectrum termination in the two-dimensional quantum spin liquid found in PHCC.

“When you attempt to create an excitation that is more than twice the gap rate, it’s possible that your excitation decays, “ Zaliznyak said. “In Bose quantum liquids, when decay processes like this become allowed, you can’t have quasiparticles.”

The research was funded by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science, the National Science Foundation, and the Robert A. Welch Foundation.

Kay Cordtz | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>