Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at University of Kent investigate glass as a healing material

24.03.2005


The University of Kent is collaborating with research teams from the University of Warwick, Imperial College London and University College London (UCL) to develop novel forms of degradable glass for a variety of medical applications, including new bone growth.



The Kent team, led by Bob Newport, Professor of Materials Physics and Director of the Functional Materials Group, has successfully steered a joint bid to the Engineering & Physical Sciences Research Council (EPSRC), which has released almost £1million in new research funding to the partnership.

The aim of the research is to investigate bioactive glasses and their possible use for a variety of medical applications. Bioactive glasses are significantly different to the glass used for the likes of TV screens or bottles; for instance, it is possible in some cases to produce a glass that will actually prompt the body to grow new bone. In all cases, the glass will dissolve safely away when in contact with body fluids such as blood plasma.


Commenting on the project, Bob Newport said: ‘The longer-term possibilities for tissue regeneration, for example, are really quite exciting – and even in the short-term these glasses offer the possibility of surgical implant materials with antibacterial properties and improved bio-compatibility. The challenge we have accepted at Kent is not only to synthesise the new materials, but also to begin to understand their make-up at the level of their constituent atoms.’

Conventionally, a glass is created by casting it in a furnace at high temperature, but there is a chemical technique to manufacture the glass at much lower temperatures from high-purity chemicals. The sol-gel process, as it is called, extends the region of glass forming, so that one can create certain chemical compositions that were previously impossible, and also create some unusual structures such as a high level of porosity. This opens up the possibility of building valuable attributes into the glass: and this is in fact the focus of the new funding. Key to the recently announced research support is the development by the Kent team of a means of using this route to make a series of bio-dissolvable glass materials able to prevent the formation of bacterial infection on surgical implants.

The newly-funded multidisciplinary partnership – involving the synthesis and advanced X-ray and neutron scattering expertise at Kent, a leading solid state Nuclear Magnetic Resonance (NMR) group at Warwick and the Division of Biomaterials and Tissue Engineering at the Eastman Dental Institute at UCL – will allow the scientists to examine the relationship between the structure and in vitro properties of this family of glasses.

In many ways this new project builds upon the long-standing Kent-Warwick research partnership in sol-gel materials, and complements their work on silicate-based bioactive glasses undertaken with the Tissue Engineering Group at Imperial College and aimed at understanding the material’s ability to promote bone regeneration.

| alfa
Further information:
http://www.kent.ac.uk

More articles from Physics and Astronomy:

nachricht Subnano lead particles show peculiar decay behavior
25.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Getting electrons to move in a semiconductor
25.04.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>