Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at University of Kent investigate glass as a healing material

24.03.2005


The University of Kent is collaborating with research teams from the University of Warwick, Imperial College London and University College London (UCL) to develop novel forms of degradable glass for a variety of medical applications, including new bone growth.



The Kent team, led by Bob Newport, Professor of Materials Physics and Director of the Functional Materials Group, has successfully steered a joint bid to the Engineering & Physical Sciences Research Council (EPSRC), which has released almost £1million in new research funding to the partnership.

The aim of the research is to investigate bioactive glasses and their possible use for a variety of medical applications. Bioactive glasses are significantly different to the glass used for the likes of TV screens or bottles; for instance, it is possible in some cases to produce a glass that will actually prompt the body to grow new bone. In all cases, the glass will dissolve safely away when in contact with body fluids such as blood plasma.


Commenting on the project, Bob Newport said: ‘The longer-term possibilities for tissue regeneration, for example, are really quite exciting – and even in the short-term these glasses offer the possibility of surgical implant materials with antibacterial properties and improved bio-compatibility. The challenge we have accepted at Kent is not only to synthesise the new materials, but also to begin to understand their make-up at the level of their constituent atoms.’

Conventionally, a glass is created by casting it in a furnace at high temperature, but there is a chemical technique to manufacture the glass at much lower temperatures from high-purity chemicals. The sol-gel process, as it is called, extends the region of glass forming, so that one can create certain chemical compositions that were previously impossible, and also create some unusual structures such as a high level of porosity. This opens up the possibility of building valuable attributes into the glass: and this is in fact the focus of the new funding. Key to the recently announced research support is the development by the Kent team of a means of using this route to make a series of bio-dissolvable glass materials able to prevent the formation of bacterial infection on surgical implants.

The newly-funded multidisciplinary partnership – involving the synthesis and advanced X-ray and neutron scattering expertise at Kent, a leading solid state Nuclear Magnetic Resonance (NMR) group at Warwick and the Division of Biomaterials and Tissue Engineering at the Eastman Dental Institute at UCL – will allow the scientists to examine the relationship between the structure and in vitro properties of this family of glasses.

In many ways this new project builds upon the long-standing Kent-Warwick research partnership in sol-gel materials, and complements their work on silicate-based bioactive glasses undertaken with the Tissue Engineering Group at Imperial College and aimed at understanding the material’s ability to promote bone regeneration.

| alfa
Further information:
http://www.kent.ac.uk

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>