Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spintronic Materials Show Their First Move

22.03.2005


Physicists trace the “hopping” of single electrons in magnetic materials



How much energy does it take for an electron to hop from atom to atom, and how do the magnetic properties of the material influence the rate or ease of hopping? Answers to those questions could help explain why some materials, like those used in a computer hard drive, become conductors only in a magnetic field while they are very strong insulators otherwise. They might also help scientists learn how to use the electron’s “spin” (a property analogous to the spinning of a child’s toy top), as well as its charge, to carry information in a new field known as spintronics.

Stéphane Grenier, a postdoctoral fellow studying electronic excitations, or “electron hopping,” at the U.S. Department of Energy’s Brookhaven National Laboratory, will describe the techniques he uses and the properties of these materials at the March 2005 meeting of the American Physical Society in Los Angeles, California. His talk will take place on Monday, March 21, at 2:30 p.m. in room 151 of the Los Angeles Convention Center.


“We are looking at something very local, electrons hopping between a pair of atoms, to help us understand important macroscopic effects,” Grenier says. “This information could help predict which materials might have the properties needed for particular applications — say, increasing the storage capacity of computer hard drives — and direct the fabrication of new materials in which these properties are optimized.”

To determine the energy needed by an electron to hop from one atom to another atom, Grenier used a technique called inelastic x-ray scattering at the Advanced Photon Source at Argonne National Laboratory. He shines x-ray light onto the sample and measures the tiny difference in energy between the incoming and outgoing photons. This difference is the amount of energy needed to move the electrons.

He used this technique to study materials with different magnetic “lattices” — ferromagnetic and antiferromagnetic. In ferromagnetic materials, the atoms’ magnetic moments (that is, their spins) are all aligned in the same direction. In antiferromagnetic materials, the magnetic moments of the adjacent atoms point in opposite directions. “When the magnetic moments are aligned, the electron hopping is increased between particular atoms. That is, more electrons make the jump to their neighbors, and it takes less energy to move them,” Grenier says. “While this has been known for a while, we have shown the direction in which the electrons move and exactly what price they ‘pay,’ in terms of energy, to move, and the influence the magnetic lattice of the material has on this hopping.”

The electrons want to align their own magnetic moments, or spins, with that of the atoms in the lattice, he explains. “They will do so only if all the atoms’ magnetic moments are aligned — that is when the ‘fare’ for hopping has its lowest price,” he said.

Electrons moving with their spins aligned in the same direction make a current of spins, which could be used, somewhat like currents of electrical charge are now used, to pass or transform information in future electronic components made of tailored magnetic lattices — a future generation of circuits based on the science of “spintronics,” which is also carried out at Brookhaven Lab. Grenier’s studies, along with theoretical analysis of the materials, may also help scientists understand why some materials possess properties such as superconductivity and “colossal magnetoresistance,” the ability of some strong insulators to become good conductors when induced by a magnetic field.

Studies on atomic magnetism have applications for understanding novel materials — including spintronic materials and superconductors — that will revolutionize the electronic and energy industries. Such studies using x-rays can only be performed in the U.S. at x-ray synchrotron radiation facilities built and managed by the U.S. Department of Energy’s Office of Science.

This research was funded by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>