Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MICE to go ahead

22.03.2005


In the quest to unravel the characteristics of the mysterious neutrino particle, millions of which pass through us undetected every day, scientists from several international universities have joined forces with UK research colleagues to build a unique engineering technology demonstrator at the Rutherford Appleton Laboratory in Oxfordshire. Known as MICE [Muon Ionisation Cooling Experiment] the experiment will prove one of the key requirements to produce intense beams of neutrinos at a dedicated Neutrino Factory to be built later this decade.

Announcing funding for the experiment Science and Innovation Minister, Lord Sainsbury said, “It is a testament to the UK’s world class science and facilities that leading experimental physicists from across the globe have supported conducting a project of this calibre in the UK. The Government’s investment in this experiment will provide a unique showcase of UK scientific and engineering technology.The support for using the Rutherford Appleton Laboratory in Oxfordshire is a further demonstration of the UK’s position as a leading base for scientific research and innovation.”

Recent observations of solar neutrinos have shown that they change state [oscillate], between three forms – electron, tau and muon – during their journey from the Sun to the Earth. This discovery is extremely significant since oscillations can only occur if neutrinos have mass. The Standard Model of particle physics, on which our current understanding how our universe was created and is held together, assumes that neutrinos have no mass. The ability for neutrinos to change state, therefore having mass, means the Standard Model is wrong or incomplete.



MICE will study the behaviour of muons as they pass through materials and are then subsequently accelerated. In this way, scientists will learn how to create bunches of muons having similar energies and travelling in the same direction, which can then be accelerated and stored within the Neutrino Factory as part of the process to explore the characteristics of the neutrino to unprecedented accuracy, reshaping our understanding of the structure of nature and the forces which bind it together.

Funding for MICE has been provided by the Government’s Large Facilities Capital Fund (£7.5 million), the Particle Physics and Astronomy Research Council [PPARC] £1.28 million and the Council for the Central Laboratory of the Research Councils [CCLRC] £0.92 million.

Professor Ian Halliday, Chief Executive of PPARC said, “ Siting MICE here in the UK is a clear recognition of the expertise and infrastructure we already have in place – and this positive investment will position the UK to be a major player in the development and possible hosting of a Neutrino Factory in the future.”

In order to make precise measurements of the detailed characteristics of neutrino oscillations a new facility, a Neutrino Factory, is required. Such a facility will produce very intense beams of neutrinos with well known characteristics. The objective of MICE is to show that muons can be assembled into “bunches” with similar energies going in the same direction enabling them to be suitable for subsequent acceleration and storage. The technology for this process of ‘ionisation cooling’, as it is known, will be demonstrated by MICE. The feasibility of this novel technique is at the root of a whole line of new accelerators from Neutrino Factories to Muon Colliders. After an exhaustive search, the international collaboration decided that the muon beam from ISIS at the Rutherford Appleton Laboratory provided the most suitable environment for this experiment. The collaboration will design, build and test a section of the realistic cooling channel on a beam line.

Professor John Wood, Chief Executive of the Rutherford Appleton Laboratory said, “I am delighted that the international Muon Ionisation Cooling Experiment (MICE) will be performed at the CCLRC’s Rutherford Appleton Laboratory. This project adds to the already considerable portfolio of world-leading projects hosted on ISIS, the world’s most powerful pulsed neutron source, and represents a major step on the way to the design of a future neutrino factory."

Professor Ken Long of Imperial College London, and the UK Spokesperson for MICE said “I am very pleased that MICE is going to be performed in the UK on ISIS. This is a very significant step towards the design of a Neutrino Factory, and could not have been achieved without the dedication and support of the international MICE collaboration, from Europe, the US and Japan. It is also a remarkable success for particle physicists and accelerator scientists in the UK. I would also like to acknowledge the strong support that we have received from many people and organisations, but particularly PPARC and CCLRC, and the contribution from the Large Facilities Capital Fund, without which this would not have been possible.”

The MICE collaboration consists of 150 scientists from the UK, continental Europe, the US and Japan. UK collaborators are from UK collaborators are from Brunel University, University of Edinburgh, Glasgow University, University of Liverpool, Imperial College London, University of Oxford, CCLRC Rutherford Appleton Laboratory, University of Sheffield.

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk/Nw/mice.asp

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>