Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MICE to go ahead


In the quest to unravel the characteristics of the mysterious neutrino particle, millions of which pass through us undetected every day, scientists from several international universities have joined forces with UK research colleagues to build a unique engineering technology demonstrator at the Rutherford Appleton Laboratory in Oxfordshire. Known as MICE [Muon Ionisation Cooling Experiment] the experiment will prove one of the key requirements to produce intense beams of neutrinos at a dedicated Neutrino Factory to be built later this decade.

Announcing funding for the experiment Science and Innovation Minister, Lord Sainsbury said, “It is a testament to the UK’s world class science and facilities that leading experimental physicists from across the globe have supported conducting a project of this calibre in the UK. The Government’s investment in this experiment will provide a unique showcase of UK scientific and engineering technology.The support for using the Rutherford Appleton Laboratory in Oxfordshire is a further demonstration of the UK’s position as a leading base for scientific research and innovation.”

Recent observations of solar neutrinos have shown that they change state [oscillate], between three forms – electron, tau and muon – during their journey from the Sun to the Earth. This discovery is extremely significant since oscillations can only occur if neutrinos have mass. The Standard Model of particle physics, on which our current understanding how our universe was created and is held together, assumes that neutrinos have no mass. The ability for neutrinos to change state, therefore having mass, means the Standard Model is wrong or incomplete.

MICE will study the behaviour of muons as they pass through materials and are then subsequently accelerated. In this way, scientists will learn how to create bunches of muons having similar energies and travelling in the same direction, which can then be accelerated and stored within the Neutrino Factory as part of the process to explore the characteristics of the neutrino to unprecedented accuracy, reshaping our understanding of the structure of nature and the forces which bind it together.

Funding for MICE has been provided by the Government’s Large Facilities Capital Fund (£7.5 million), the Particle Physics and Astronomy Research Council [PPARC] £1.28 million and the Council for the Central Laboratory of the Research Councils [CCLRC] £0.92 million.

Professor Ian Halliday, Chief Executive of PPARC said, “ Siting MICE here in the UK is a clear recognition of the expertise and infrastructure we already have in place – and this positive investment will position the UK to be a major player in the development and possible hosting of a Neutrino Factory in the future.”

In order to make precise measurements of the detailed characteristics of neutrino oscillations a new facility, a Neutrino Factory, is required. Such a facility will produce very intense beams of neutrinos with well known characteristics. The objective of MICE is to show that muons can be assembled into “bunches” with similar energies going in the same direction enabling them to be suitable for subsequent acceleration and storage. The technology for this process of ‘ionisation cooling’, as it is known, will be demonstrated by MICE. The feasibility of this novel technique is at the root of a whole line of new accelerators from Neutrino Factories to Muon Colliders. After an exhaustive search, the international collaboration decided that the muon beam from ISIS at the Rutherford Appleton Laboratory provided the most suitable environment for this experiment. The collaboration will design, build and test a section of the realistic cooling channel on a beam line.

Professor John Wood, Chief Executive of the Rutherford Appleton Laboratory said, “I am delighted that the international Muon Ionisation Cooling Experiment (MICE) will be performed at the CCLRC’s Rutherford Appleton Laboratory. This project adds to the already considerable portfolio of world-leading projects hosted on ISIS, the world’s most powerful pulsed neutron source, and represents a major step on the way to the design of a future neutrino factory."

Professor Ken Long of Imperial College London, and the UK Spokesperson for MICE said “I am very pleased that MICE is going to be performed in the UK on ISIS. This is a very significant step towards the design of a Neutrino Factory, and could not have been achieved without the dedication and support of the international MICE collaboration, from Europe, the US and Japan. It is also a remarkable success for particle physicists and accelerator scientists in the UK. I would also like to acknowledge the strong support that we have received from many people and organisations, but particularly PPARC and CCLRC, and the contribution from the Large Facilities Capital Fund, without which this would not have been possible.”

The MICE collaboration consists of 150 scientists from the UK, continental Europe, the US and Japan. UK collaborators are from UK collaborators are from Brunel University, University of Edinburgh, Glasgow University, University of Liverpool, Imperial College London, University of Oxford, CCLRC Rutherford Appleton Laboratory, University of Sheffield.

Gill Ormrod | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>