Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Hourglass’ shaped craters filled traces of glacier

18.03.2005


This image, taken by the High Resolution Stereo Camera (HRSC) on board ESA’s Mars Express spacecraft, shows flow features most likely formed by glaciers or ‘block’ glaciers.



This unusual ‘hourglass’-shaped structure is located in Promethei Terra at the eastern rim of the Hellas Basin, at about latitude 38º South and longitude 104º East. A so-called ‘block’ glacier, an ice stream with a large amount of scree (small rocks of assorted sizes), flowed from a flank of the massif into a bowl-shaped impact crater (left), nine kilometres wide, which has been filled nearly to the rim. The block glacier then flowed into a 17 kilometre wide crater, 500 metres below, taking advantage of downward slope.

The Martian surface at mid latitudes and even near the equator was being shaped by glaciers until a few million years ago. Today, water ice could still exist at shallow depths as ‘fossil’ remnants of these glaciers.


Numerous concentric ridges are visible and appear similar to ‘end moraines’ (hills of scree that form as an extending glacier pushes material ahead and remain after its retreat). Furthermore, there are parallel stripe-like structures that are interpreted as middle moraines, displaying the flow direction of these glaciers. In locations where glaciers creep over steep terrain, cracks are visible. Similarly in terrestrial glaciers, cracks are formed when tensile stress within the ice increases due to greater slope and uneven terrain.

Further glacial features include elongated grooves, extending several kilometres, and elongated hills observed on the surface of mountain ridges some distance from potentially glaciated areas. These hills could be analogous to so-called ‘drumlins’, structures formed beneath ice by glacial flow resulting in compression and accumulation of abraded material. On Earth, drumlins appear in formerly glaciated regions such as Germany’s Bavarian alpine uplands. These glacial structures are seen in a consistent spatial context, confirming the belief that scientists are really seeing former glaciers on Mars.

Of particular interest is the age of these glacially shaped surfaces, which seem to be fairly intact over a wide area of the formerly glaciated terrain. Typical evidence for a significant loss of ice volume, such as ‘kettle holes’ present in ice-free regions of Iceland, are almost entirely missing. The statistical analysis of the number of craters formed by meteorite impacts used for age determination also shows that part of the surface with its present-day glacial characteristics was formed only a few million years ago. In planetology, this age range is considered extremely young.

In these latitudes, ice on the surface of Mars is not stable over a long period of time due to the extremely thin atmosphere. In theory it is cold enough to allow for the existence of glaciers at the equator – summer day temperatures rise to a maximum of 20° C while night and winter time temperatures often drop below minus 50° C. But under the prevailing atmospheric pressure, ice would sublimate (transform directly from solid to gaseous state), and then escape from the atmosphere into outer space.

Therefore, glaciers must have formed until a few million years ago, in a time that was warmer and possibly also had a thicker atmosphere, and then became inactive or retreated due to the lack of continued supply of ice. Since then, they have been protected from sublimation by a thin dust layer. On Mars, dust is almost ubiquitous and would explain why ‘fossil’ ice present at depths of only a few metres could not be detected by other instruments such as spectrometers.

If these conclusions prove to be true, the results would indicate a climate change on Mars within the last million years. Such a dramatic climate change has been discussed for some years by Mars researchers. It could have been caused by a shift in the polar axis of the planet over millions of years – a phenomenon long known to scientists. Martian climate history is one of the main areas that ESA’s Mars Express can help to decipher.

For more information on Mars Express HRSC images, you might like to read our updated ’Frequently Asked Questions’.

Monica Talevi | alfa
Further information:
http://www.esa.int
http://www.esa.int/SPECIALS/Mars_Express/SEMN3IRMD6E_0.html

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>