Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Hourglass’ shaped craters filled traces of glacier

18.03.2005


This image, taken by the High Resolution Stereo Camera (HRSC) on board ESA’s Mars Express spacecraft, shows flow features most likely formed by glaciers or ‘block’ glaciers.



This unusual ‘hourglass’-shaped structure is located in Promethei Terra at the eastern rim of the Hellas Basin, at about latitude 38º South and longitude 104º East. A so-called ‘block’ glacier, an ice stream with a large amount of scree (small rocks of assorted sizes), flowed from a flank of the massif into a bowl-shaped impact crater (left), nine kilometres wide, which has been filled nearly to the rim. The block glacier then flowed into a 17 kilometre wide crater, 500 metres below, taking advantage of downward slope.

The Martian surface at mid latitudes and even near the equator was being shaped by glaciers until a few million years ago. Today, water ice could still exist at shallow depths as ‘fossil’ remnants of these glaciers.


Numerous concentric ridges are visible and appear similar to ‘end moraines’ (hills of scree that form as an extending glacier pushes material ahead and remain after its retreat). Furthermore, there are parallel stripe-like structures that are interpreted as middle moraines, displaying the flow direction of these glaciers. In locations where glaciers creep over steep terrain, cracks are visible. Similarly in terrestrial glaciers, cracks are formed when tensile stress within the ice increases due to greater slope and uneven terrain.

Further glacial features include elongated grooves, extending several kilometres, and elongated hills observed on the surface of mountain ridges some distance from potentially glaciated areas. These hills could be analogous to so-called ‘drumlins’, structures formed beneath ice by glacial flow resulting in compression and accumulation of abraded material. On Earth, drumlins appear in formerly glaciated regions such as Germany’s Bavarian alpine uplands. These glacial structures are seen in a consistent spatial context, confirming the belief that scientists are really seeing former glaciers on Mars.

Of particular interest is the age of these glacially shaped surfaces, which seem to be fairly intact over a wide area of the formerly glaciated terrain. Typical evidence for a significant loss of ice volume, such as ‘kettle holes’ present in ice-free regions of Iceland, are almost entirely missing. The statistical analysis of the number of craters formed by meteorite impacts used for age determination also shows that part of the surface with its present-day glacial characteristics was formed only a few million years ago. In planetology, this age range is considered extremely young.

In these latitudes, ice on the surface of Mars is not stable over a long period of time due to the extremely thin atmosphere. In theory it is cold enough to allow for the existence of glaciers at the equator – summer day temperatures rise to a maximum of 20° C while night and winter time temperatures often drop below minus 50° C. But under the prevailing atmospheric pressure, ice would sublimate (transform directly from solid to gaseous state), and then escape from the atmosphere into outer space.

Therefore, glaciers must have formed until a few million years ago, in a time that was warmer and possibly also had a thicker atmosphere, and then became inactive or retreated due to the lack of continued supply of ice. Since then, they have been protected from sublimation by a thin dust layer. On Mars, dust is almost ubiquitous and would explain why ‘fossil’ ice present at depths of only a few metres could not be detected by other instruments such as spectrometers.

If these conclusions prove to be true, the results would indicate a climate change on Mars within the last million years. Such a dramatic climate change has been discussed for some years by Mars researchers. It could have been caused by a shift in the polar axis of the planet over millions of years – a phenomenon long known to scientists. Martian climate history is one of the main areas that ESA’s Mars Express can help to decipher.

For more information on Mars Express HRSC images, you might like to read our updated ’Frequently Asked Questions’.

Monica Talevi | alfa
Further information:
http://www.esa.int
http://www.esa.int/SPECIALS/Mars_Express/SEMN3IRMD6E_0.html

More articles from Physics and Astronomy:

nachricht A quantum spin liquid
24.10.2017 | Boston College

nachricht Single nanoparticle mapping paves the way for better nanotechnology
24.10.2017 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Single nanoparticle mapping paves the way for better nanotechnology

24.10.2017 | Physics and Astronomy

A quantum spin liquid

24.10.2017 | Physics and Astronomy

Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise

24.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>