Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finnish SPIN researchers at forefront of development: Spintronics can bring electronics down to size

18.03.2005


Researchers working on the room temperature spintronics (SPIN) research project are the first in Europe to successfully produce GaMnN layers, which are ferromagnetic at room temperature. The layer properties were examined using electric, optic, x-ray and positron measurements. The Academy-funded SPIN project is comprised of four participating entities, i.e. the Helsinki University of Technology (HUT) Departments of Electron Physics, Optoelectronics and Physics laboratories and the VTT Technical Research Centre of Finland Microelectronics research institute.



Headed by Dr Markku Sopanen, the SPIN project focuses on the research of manganese-doped gallium arsenide and gallium nitride. Gallium nitride is the most promising material for use in spintronics components which are operated at room temperature. The project also produced the first GaMnAs tunneling diode component, whose electrical properties are closely dependent on magnetic fields. High-speed tunneling diodes are used in, for example, microwave technologies.

Previously, ferromagnetic III-V semiconductors that functioned at room temperature were a completely unknown entity. Advances made in recent years have increased the ranks of ferromagnetic semiconductors with such compounds as GaMnAs clusters, InMnAs and GaMnN, whose Curie temperature is considerably higher than room temperature. Ferromagnetic III-V semiconductors are among the most interesting new material sectors in electronics and optoelectronics. These materials have a wide range of possible applications, in which the spin of electrons is used in electronic components. Examples include magnetic storage devices, magnetic field sensors, magnetically-controlled devices, spin transistors, polarisation-controlled optoelectronics devices and even quantum computing.


Magnetic semiconductors allow single components to perform multiple functions

Current spintronics (or magnetoelectronics) applications are based on magnetic metals. However, magnetic metals can only be used in applications based on memory, reader heads or magnetic sensors. Magnetic semiconductors, on the other hand, can be used in developing applications for these and other areas. Their key advantage is that multiple functions can be integrated in a single component, which can function simultaneously as a memory and amplifier.

Moreover, the advanced manufacturing techniques of semiconductors also allow spintronics components to be integrated in existing applications. Many magnetic phenomena are also more pronounced in magnetic semiconductors than in magnetic metals.

In state-of-the-art electronics data processing is based solely on the electron charge, whereas in spintronics it is based on both the electron charge and spin. The spins of electrons in the ferromagnetic material are put into the same direction using an externally-generated magnetic field, and the spins will continue in the same direction even after the magnetic field has been removed. The function of spintronics components is based on the fact that spins running in the same or opposite directions will alter the optical, electrical and magnetic properties of the component.

TULE conducts long-term, high-calibre basic research on electronics

The SPIN project is part of the Academy of Finland-funded Future Electronics (TULE) Research Programme, which is comprised of 18 research projects. The Programme is divided into following subject areas: circuits and systems; materials, optics and optoelectronics; and nanoelectronics.

The goal of the Programme is to conduct long-term, high-calibre basic research on electronics, which supports research and development in the Finnish electronics industry and can be used to innovate new applications. The Programme also aims to enhance scientific expertise and research environments in sectors vital to the current and future development of the Finnish electronics industry as well as to establish a qualified workforce required by growth in the field.

Terhi Loukiainen | alfa
Further information:
http://www.aka.fi

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>