Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers find evidence of dark energy in our galactic neighborhood


Astrophysicists in recent years have found evidence for a force they call dark energy in observations from the farthest reaches of the universe, billions of light years away.

A supercomputer-produced cross-section of part of the universe shows galaxies as brighter dots along filaments of matter, with a sea of dark energy filling in between the galactic islands. (Credit James Wadsley, McMaster University, Hamilton, Ontario)

Now an international team of researchers has used data from powerful computer models, supported by observations from the Hubble Space Telescope, to find evidence of dark energy right in our own cosmic neighborhood.

The data paint a picture of the universe as a virtual sea of dark energy, with billions of galaxies as islands emerging from the sea, said Fabio Governato, a University of Washington research associate professor of astronomy and a researcher with Italy’s National Institute for Astrophysics.

In 1929 astronomer Edwin Hubble demonstrated that galaxies are moving away from each other, which supported the theory that the universe has been expanding since the big bang. In 1999 cosmologists reported evidence that an unusual force, called dark energy, was actually causing the expansion of the universe to accelerate.

However, the expansion is slower than it would be otherwise because of the tug of gravity among galaxies. As the battle between the attraction of gravity and the repellent force of dark energy plays out, cosmologists are left to ponder whether the expansion will continue forever or if the universe will collapse in a "big crunch."

In 1997, Governato designed a computer model to simulate evolution of the universe from the big bang until the present. His research group found the model could not duplicate the smooth expansion that had been observed among galaxies around the Milky Way, the galaxy in which Earth resides. In fact, the model produced deviations from a purely radial expansion that were three to seven times higher than astronomers had actually observed, Governato said.

"The observed motion was small, and we could not duplicate it without the presence of dark energy," he said. "When we added the dark energy, we got a perfect match."

Governato is one of three authors of a paper describing the work, scheduled for publication in the Monthly Notices of the Royal Astronomical Society, an astronomy journal in the United Kingdom. Co-authors are Andrea Maccio of the University of Zurich in Switzerland and Cathy Horellou of Chalmers University of Technology in Sweden. The work was supported by grants from the National Science Foundation and Vetenskapsrådet, the Swedish Research Council.

The authors, part of an international research collaboration called the N-Body Shop that originated at the UW, ran simulations of universe expansion on powerful supercomputers in Italy and Alaska. Their findings provide supporting evidence for a sea of dark energy surrounding galaxies.

"We studied the properties of galaxies close to the Milky Way instead of looking billions of light years away," Governato said. "It’s like traveling from Seattle to Portland, Ore., rather than from Seattle to New York, to measure the Earth’s curvature."

Vince Stricherz | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>