Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini Finds an Atmosphere on Saturn’s Moon Enceladus

17.03.2005


The Cassini spacecraft’s two flybys of the icy moon Enceladus have revealed that the moon has a significant atmosphere. Scientists using Cassini’s magnetometer instrument for their studies, say the source may be due to volcanism, geysers, or gases escaping from the surface or its interior.



When the Cassini had its first encounter with Enceladus on 17th February 2005 at an altitude of 1,167 kilometres (725 miles), the magnetometer instrument saw a striking signature in the magnetic field. On 9th March 2005 Cassini approached to within 500 km (310 miles) of Enceladus’ surface and obtained additional evidence.

The observations showed a bending of the magnetic field with the magnetospheric plasma being slowed and deflected by the moon. In addition magnetic field oscillations were observed. These are caused when electrically charged (or ionised) molecules interact with the magnetic field by spiralling around the field line. This interaction creates characteristic oscillations in the magnetic field at frequencies that can be used to identify the molecule. The observations from the Enceladus flybys are believed to be due to ionised water vapour.


"It was a complete surprise to find these signals at Enceladus. These new results from Cassini may be the first evidence of gases originating either from the surface or possibly from the interior of Enceladus," said Professor Michele Dougherty, of Imperial College, London and Principal Investigator for the Cassini magnetometer. In 1981 the Voyager spacecraft flew by Enceladus at a distance of 90,000 kilometres (56,000 miles) without detecting an atmosphere. It is possible that detection was beyond Voyager’s capabilities or something may have changed since that flyby.

This is the first time since Cassini arrived in orbit around Saturn last summer that an atmosphere has been detected around a moon of Saturn, other than its largest moon, Titan. Enceladus is a relatively small moon. The amount of gravity it exerts is not enough to hold an atmosphere very long. Therefore at Enceladus, a strong continuous source is required to maintain the atmosphere.

The need for such a strong source leads scientists to consider eruptions from the surface, such as volcanoes and geysers. If such eruptions are present, Enceladus would join two other such active moons, Io at Jupiter and Triton at Neptune. “Enceladus could be Saturn’s more benign counterpart to Jupiter’s dramatic Io”, said Professor Fritz Neubauer, co-investigator for the Cassini magnetometer from the University of Cologne, Germany.

Since the Voyager flyby scientists have suspected that this moon is geologically active and is the source of Saturn’s icy E ring. Enceladus is the most reflective object in the solar system, reflecting about 90 percent of the sunlight that hits it. If Enceladus does have ice volcanoes, the high reflectivity of the moon’s surface might result from continuous deposition of icy particles originating from the volcanoes.

Enceladus’ diameter is about 500 kilometres or 310 miles (the equivalent distance between London and Penzance). Yet despite its small size Enceladus exhibits one of the most interesting surfaces of all the icy satellites.

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk/Nw/enceladus.asp

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>