Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Was Einstein right when he said he was wrong?

17.03.2005


Italian, US cosmologists present alternate explanation for accelerating expansion of the universe



Why is the universe expanding at an accelerating rate, spreading its contents over ever greater dimensions of space? An original solution to this puzzle, certainly the most fascinating question in modern cosmology, was put forward by four theoretical physicists, Edward W. Kolb of the U.S. Department of Energy’s Fermi National Accelerator Laboratory, Chicago (USA): Sabino Matarrese of the University of Padova; Alessio Notari from the University of Montreal (Canada); and Antonio Riotto of INFN (Istituto Nazionale di Fisica Nucleare) of Padova (Italy). Their study was submitted yesterday to the journal Physical Review Letters.

Over the last hundred years, the expansion of the universe has been a subject of passionate discussion, engaging the most brilliant minds of the century. Like his contemporaries, Albert Einstein initially thought that the universe was static: that it neither expanded nor shrank. When his own Theory of General Relativity clearly showed that the universe should expand or contract, Einstein chose to introduce a new ingredient into his theory. His “cosmological constant” represented a mass density of empty space that drove the universe to expand at an ever-increasing rate.


When in 1929 Edwin Hubble proved that the universe is in fact expanding, Einstein repudiated his cosmological constant, calling it “the greatest blunder of my life.” Then, almost a century later, physicists resurrected the cosmological constant in a variant called dark energy. In 1998, observations of very distant supernovae demonstrated that the universe is expanding at an accelerating rate. This accelerating expansion seemed to be explicable only by the presence of a new component of the universe, a “dark energy,” representing some 70 percent of the total mass of the universe. Of the rest, about 25 percent appears to be in the form of another mysterious component, dark matter; while only about 5 percent comprises ordinary matter, those quarks, protons, neutrons and electrons that we and the galaxies are made of.

“The hypothesis of dark energy is extremely fascinating,” explains Padova’s Antonio Riotto, “but on the other hand it represents a serious problem. No theoretical model, not even the most modern, such as supersymmetry or string theory, is able to explain the presence of this mysterious dark energy in the amount that our observations require. If dark energy were the size that theories predict, the universe would have expanded with such a fantastic velocity that it would have prevented the existence of everything we know in our cosmos.”

The requisite amount of dark energy is so difficult to reconcile with the known laws of nature that physicists have proposed all manner of exotic explanations, including new forces, new dimensions of spacetime, and new ultralight elementary particles. However, the new report proposes no new ingredient for the universe, only a realization that the present acceleration of the universe is a consequence of the standard cosmological model for the early universe: inflation.

“Our solution to the paradox posed by the accelerating universe,” Riotto says, “relies on the so-called inflationary theory, born in 1981. According to this theory, within a tiny fraction of a second after the Big Bang, the universe experienced an incredibly rapid expansion. This explains why our universe seems to be very homogeneous. Recently, the Boomerang and WMAP experiments, which measured the small fluctuations in the background radiation originating with the Big Bang, confirmed inflationary theory.

It is widely believed that during the inflationary expansion early in the history of the universe, very tiny ripples in spacetime were generated, as predicted by Einstein’s theory of General Relativity. These ripples were stretched by the expansion of the universe and extend today far beyond our cosmic horizon, that is over a region much bigger than the observable universe, a distance of about 15 billion light years. In their current paper, the authors propose that it is the evolution of these cosmic ripples that increases the observed expansion of the universe and accounts for its acceleration.

“We realized that you simply need to add this new key ingredient, the ripples of spacetime generated during the epoch of inflation, to Einstein’s General Relativity to explain why the universe is accelerating today,” Riotto says. “It seems that the solution to the puzzle of acceleration involves the universe beyond our cosmic horizon. No mysterious dark energy is required.”

Fermilab’s Kolb called the authors’ proposal the most conservative explanation for the accelerating universe. “It requires only a proper accounting of the physical effects of the ripples beyond our cosmic horizon,” he said.

Data from upcoming experiments will allow cosmologists to test the proposal. “Whether Einstein was right when he first introduced the cosmological constant, or whether he was right when he later refuted the idea will soon be tested by a new round of precision cosmological observations,” Kolb said. “New data will soon allow us to distinguish between our explanation for the accelerated expansion of the universe and the dark energy solution.”

Barbara Gallavotti | alfa
Further information:
http://www.infn.it

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>