Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutrino To Be Lucky Catch

15.03.2005


Neutrinos released in Switzerland are due to be caught in Italy under the international project OPERA. The system of detectors for identifying these mysterious particles is developed by a joint effort of Russian and Ukrainian scientists.



Specialists from the Joint Institute for Nuclear Research (Dubna, Russia) and Institute of Scintillator Materials NASU (Kharkov, Ukraine) have joined the Project OPERA that is a biggest and most expensive international experiment in the field of physics.

Under this project, neutrino beam will be generated by proton accelerator in the CERN (Geneva, Switzerland). At a speed close to that of light, the beam will instantly cover the distance of 730 km under ground and reach the laboratory Gran Sasso (Italy) situated at a depth of 1.5 km in the side halls of an automobile tunnel. There, the beam will go through the detectors and leave its traces.


A large and dense net is needed for catching neutrinos that can easily go throughout the Earth. To achieve this goal, scientists have designed a huge complex target having dimensions of 10x10x100 m and several systems of particle detection. Its walls are made of bricks that consist of nuclear emulsions and lead sheets. Plastic scintillators, placed between the bricks, are needed to produce a flash of light upon absorption of an ionizing particle, specifically, neutrino. There are also electronic devices to register the flash and identify the actual brick, where the neutrino interaction took place.

However, that is only the beginning of detection process. Then, scientists need to take the brick out of the wall and study particle tracks left on each of the emulsion sheets, which will finally allow for neutrino identification.

One can imagine the scale of work looking at these figures: the target is built of 62 walls containing in total 206336 bricks; each brick is made of 57 nuclear emulsions and 56 lead sheets. The analysis of one brick with the use of latest computer technologies and special equipment will take tens of hours. The Ukrainian scientists are involved into the OPERA project as the designers of new scintillator making technique. They have built the world’s largest furnace for raw material processing and produced 33 thousands of 7-meter-long strips with a total weight of 70 tons.

Why the scientists have launched this difficult, expensive, and labour-consuming project? Because discovering the properties of neutrino will in the long run help to understand certain cosmic processes, e.g., the expansion of the universe. Apparently, the mechanism of mass formation in neutrino is somewhat different from that in other particles. It is not excluded that neutrino is the key to future physics.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>