Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutrino To Be Lucky Catch

15.03.2005


Neutrinos released in Switzerland are due to be caught in Italy under the international project OPERA. The system of detectors for identifying these mysterious particles is developed by a joint effort of Russian and Ukrainian scientists.



Specialists from the Joint Institute for Nuclear Research (Dubna, Russia) and Institute of Scintillator Materials NASU (Kharkov, Ukraine) have joined the Project OPERA that is a biggest and most expensive international experiment in the field of physics.

Under this project, neutrino beam will be generated by proton accelerator in the CERN (Geneva, Switzerland). At a speed close to that of light, the beam will instantly cover the distance of 730 km under ground and reach the laboratory Gran Sasso (Italy) situated at a depth of 1.5 km in the side halls of an automobile tunnel. There, the beam will go through the detectors and leave its traces.


A large and dense net is needed for catching neutrinos that can easily go throughout the Earth. To achieve this goal, scientists have designed a huge complex target having dimensions of 10x10x100 m and several systems of particle detection. Its walls are made of bricks that consist of nuclear emulsions and lead sheets. Plastic scintillators, placed between the bricks, are needed to produce a flash of light upon absorption of an ionizing particle, specifically, neutrino. There are also electronic devices to register the flash and identify the actual brick, where the neutrino interaction took place.

However, that is only the beginning of detection process. Then, scientists need to take the brick out of the wall and study particle tracks left on each of the emulsion sheets, which will finally allow for neutrino identification.

One can imagine the scale of work looking at these figures: the target is built of 62 walls containing in total 206336 bricks; each brick is made of 57 nuclear emulsions and 56 lead sheets. The analysis of one brick with the use of latest computer technologies and special equipment will take tens of hours. The Ukrainian scientists are involved into the OPERA project as the designers of new scintillator making technique. They have built the world’s largest furnace for raw material processing and produced 33 thousands of 7-meter-long strips with a total weight of 70 tons.

Why the scientists have launched this difficult, expensive, and labour-consuming project? Because discovering the properties of neutrino will in the long run help to understand certain cosmic processes, e.g., the expansion of the universe. Apparently, the mechanism of mass formation in neutrino is somewhat different from that in other particles. It is not excluded that neutrino is the key to future physics.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>