Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutrino To Be Lucky Catch

15.03.2005


Neutrinos released in Switzerland are due to be caught in Italy under the international project OPERA. The system of detectors for identifying these mysterious particles is developed by a joint effort of Russian and Ukrainian scientists.



Specialists from the Joint Institute for Nuclear Research (Dubna, Russia) and Institute of Scintillator Materials NASU (Kharkov, Ukraine) have joined the Project OPERA that is a biggest and most expensive international experiment in the field of physics.

Under this project, neutrino beam will be generated by proton accelerator in the CERN (Geneva, Switzerland). At a speed close to that of light, the beam will instantly cover the distance of 730 km under ground and reach the laboratory Gran Sasso (Italy) situated at a depth of 1.5 km in the side halls of an automobile tunnel. There, the beam will go through the detectors and leave its traces.


A large and dense net is needed for catching neutrinos that can easily go throughout the Earth. To achieve this goal, scientists have designed a huge complex target having dimensions of 10x10x100 m and several systems of particle detection. Its walls are made of bricks that consist of nuclear emulsions and lead sheets. Plastic scintillators, placed between the bricks, are needed to produce a flash of light upon absorption of an ionizing particle, specifically, neutrino. There are also electronic devices to register the flash and identify the actual brick, where the neutrino interaction took place.

However, that is only the beginning of detection process. Then, scientists need to take the brick out of the wall and study particle tracks left on each of the emulsion sheets, which will finally allow for neutrino identification.

One can imagine the scale of work looking at these figures: the target is built of 62 walls containing in total 206336 bricks; each brick is made of 57 nuclear emulsions and 56 lead sheets. The analysis of one brick with the use of latest computer technologies and special equipment will take tens of hours. The Ukrainian scientists are involved into the OPERA project as the designers of new scintillator making technique. They have built the world’s largest furnace for raw material processing and produced 33 thousands of 7-meter-long strips with a total weight of 70 tons.

Why the scientists have launched this difficult, expensive, and labour-consuming project? Because discovering the properties of neutrino will in the long run help to understand certain cosmic processes, e.g., the expansion of the universe. Apparently, the mechanism of mass formation in neutrino is somewhat different from that in other particles. It is not excluded that neutrino is the key to future physics.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>