Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini images discover a windy, wavy Titan atmosphere

10.03.2005


The dynamic atmosphere of Saturn’s haze-enshrouded moon Titan is revealed in the first Cassini Imaging Team report on Titan, to appear in the March 10 issue of Nature.



Imaging scientists, analyzing images of Titan designed to allow views of the surface and lower atmosphere, have discovered that the winds on Titan blow a lot faster than the moon rotates. In contrast, the jet stream of Earth blows a lot slower than the surface of our planet moves.

Titan is a particularly slow rotator, taking 16 Earth days to make one full rotation. Yet, despite its slow period, model simulations made a decade ago predicted that winds in its atmosphere should blow faster than its surface rotates, making it, like its slowly rotating cousin Venus, one of the solar system’s ‘super-rotators’.


“It has long been known that winds in Venus’s atmosphere blow many times faster than the solid planet itself rotates,” said imaging team member Dr. Tony DelGenio of NASA’s Goddard Institute for Space Studies, or GISS, in New York, who made the first computer simulation predicting Titan super-rotation a decade ago. “Models of Titan’s atmosphere have indicated that it too should super-rotate just like Venus, but until now there have been no direct wind measurements to test the prediction,” he said.

Titan’s winds are measured by watching its clouds move. Clouds are a rare occurrence on Titan, and those whose motions can be tracked are often small (about 100 kilometers or 60 miles across) and faint; in other words, the clouds are too inconspicuous to be seen from Earth. The discovery of moving clouds required careful manipulation of Cassini images in which cloud features are hard to distinguish through the moon’s ubiquitous haze and against the backdrop of Titan’s complex bright and dark surface. DelGenio and his associate John Barbara, also of GISS, used Cassini images that had been taken through special filters designed to see through the haze to detect surface features as well as clouds. "To discriminate clouds from surface features, I took images of the same region at different times and subtracted them from each other,” said Barbara. “When I did this, time-variable clouds stood out as regions of changing brightness.”

Ten such clouds have been tracked, giving wind speeds as high as 34 meters per second (about 75 miles per hour) to the east – hurricane strength – at an altitude somewhere in Titan’s middle and lower troposphere. "This result is consistent with the predictions of Titan weather models, and it suggests that we now understand the basic features of how meteorology works on slowly rotating planets," said Del Genio.

Cassini images also reveal much larger cloud streaks – 1,000 kilometers (620 miles) long – elongated generally east-west. These clouds occur at preferred locations and move at only a few meters per second. Apparently these streak clouds originate closer to Titan’s surface, perhaps from places where methane is released to the atmosphere from below Titan’s surface, or places where wind blows over topography.

In Titan’s hazy stratosphere, it looks as though modelers may have to go back to the drawing board. Voyager images of Titan detected a faint detached haze layer above Titan’s main stratospheric haze, at altitudes of 300-350 kilometers (190 to 220 miles). Cassini ultraviolet images, which are sensitive to scattering of sunlight by small particles, detect a similar detached haze layer, but at an altitude of 500 kilometers (310 miles) instead.

“The change we see in the detached haze over the 25 years since Voyager suggests that either the photochemical process that produce the hydrocarbon haze particles, or the atmospheric circulation that distributes them around the planet, may change with the seasons,” said imaging team member Dr. Bob West of the Jet Propulsion Laboratory, who designed all the Titan atmosphere imaging sequences for the Cassini mission. “It will be a challenge for models to be able to predict how and where these detached hazes occur,” he said.

Images of Titan’s night side, in which high haze layers are backlit by the Sun, surprised scientists by showing evidence of an entire series of haze layers. These may be evidence of gravity waves, the atmospheric equivalent of ripples on a pond, propagating up to Titan’s upper stratosphere by disturbances that originate at lower levels. If so, then analysis of the properties of these waves may yield insights into the temperature and wind profiles of Titan’s stratosphere and how they change over the course of the mission.

Images associated with this release, and information about the Cassini-Huygens mission, are available at ciclops.org, saturn.jpl.nasa.gov and www.nasa.gov/cassini.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging team is based at the Space Science Institute, Boulder, Colo.

Preston Dyches | EurekAlert!
Further information:
http://ciclops.org

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Heating quantum matter: A novel view on topology

22.08.2017 | Physics and Astronomy

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>