Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sampling ’small atmospheres’ in the tiny new worlds of MEMS

09.03.2005


Sandia gas sampling device rapidly determines whether MEMS seals are effective



Just as astronomers want to understand the atmospheres of planets and moons, so engineers want atmospheric knowledge of worlds they create that are the size of pinheads, their "skies" capped by tiny glass bubbles.

Should their silicon inhabitants - microcircuits, microgears, and micropower drivers - exist in a vacuum? An atmosphere of nitrogen? Air as we know it? More importantly, whatever atmosphere was intended, how long will it stay that way? Is the protective barrier hermetic or will its atmosphere change over time, potentially leading to the early death of the device? Will water vapor seep in, its sticky molecules causing unpredictable behavior? What, in short, can we say about how long this little world and its inhabitants will survive and function?


The most advanced sampling procedure known - requiring only picoliters of gas to evaluate the contents of these small atmospheres - is now in place at Sandia National Laboratories, a National Nuclear Security Administration facility. The method was recently revealed at the SPIE Photonics Meeting in San Jose, Calif. "I know of no one, anywhere else, who can do this kind of testing," says Sandia innovator Steve Thornberg. John Maciel agrees. Chief Operating Officer of Radant MEMS, a three-year-old start-up company in Stow, Mass., he is under contract with DARPA to develop high-reliability MEMS (microelectromechanical) switches for microwave devices and phased array antennas. He also sees markets for his MEMS switches in cell phones. For long-term reliability, small-atmosphere stability is a must. "We can’t go to a commercial house to get this work done," he says. "We can’t find the capability anywhere else but Sandia."

The Sandia method - funded by its Laboratory-Directed Research and Development program, and presented for consideration to Sandia’s patent office - involves a small commercial valve that comes down like a trash compactor and crushes a tiny device until it releases its gases - currently, about 30 nanoliters - into a custom-built intake manifold. Because Thornberg’s test mechanism requires only picoliters, his sensitive device can recheck its own measurements - using bursts of gas delivered in a series of puffs - dozens of times from the same crushed device in a 20-minute time span. The method thus provides statistically significant atmospheric measurements at any given moment in a component’s life cycle. (Current industry tests can achieve at best only a single reading from the release of nanoliters of gas. A single, statistically unverified result may contain significant error.)

By waiting a longer period of time - weeks, or even months - other microdevices from the same batch can be crushed and then analyzed to see what changes have occurred in their atmosphere over time. Currently, the system is able to measure gasses emerging in pressures ranging from one atmosphere to .0001 torr. (One atmosphere is 760 torr.) The group hopes soon to decrease its lower sensitivity limit to .000001 torr - in effect, to be able to measure the quality of vacuums.

Says Sandia researcher Danelle Tanner, who describes herself as "a reliability-and-aging mechanism physicist" working on a silicon re-entry switch, "We want 100 percent nitrogen [atmosphere] in our device. Steve’s group gave us a really good idea of what species other than nitrogen were present in the package." "Maintaining the integrity of the internal atmosphere of a hermetic device is essential for long-term component reliability," says Thornberg. "It is within this environment that all internal materials age." Success of his group’s new investigatory technique lies in the details of the test mechanism.

A precisely machined sample holder holds the MEMS package to be crushed within the sampler valve. If the sample holder is too low, the part would not crush the MEMS device; too high, and the device would crush prematurely, letting gases escape unmeasured. Because tested devices come in many sizes, height adjustments to the crushing mechanisms are needed for each sample.

The problem of debris from the smashed part interfering with gases that must pass through tiny tubes was solved by sintering a filter into a central gasket. Perhaps most important, manifold volumes were minimized to maximize pressures when MEMS-released gases expand, reducing the amount of gas needed for an analyzable puff. Still ahead is success in measuring very small amounts of moisture, which stick to manifold walls without making it to the detector.

To overcome this problem, the Sandia group is working with Savannah River National Laboratory to incorporate that lab’s optical moisture measurement techniques based on surface plasmon resonance (SPR). In that technique, an optical fiber is used to transmit light from a specially coated lens. Moisture levels are measured from wavelength shifts.

Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>