Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sampling ’small atmospheres’ in the tiny new worlds of MEMS

09.03.2005


Sandia gas sampling device rapidly determines whether MEMS seals are effective



Just as astronomers want to understand the atmospheres of planets and moons, so engineers want atmospheric knowledge of worlds they create that are the size of pinheads, their "skies" capped by tiny glass bubbles.

Should their silicon inhabitants - microcircuits, microgears, and micropower drivers - exist in a vacuum? An atmosphere of nitrogen? Air as we know it? More importantly, whatever atmosphere was intended, how long will it stay that way? Is the protective barrier hermetic or will its atmosphere change over time, potentially leading to the early death of the device? Will water vapor seep in, its sticky molecules causing unpredictable behavior? What, in short, can we say about how long this little world and its inhabitants will survive and function?


The most advanced sampling procedure known - requiring only picoliters of gas to evaluate the contents of these small atmospheres - is now in place at Sandia National Laboratories, a National Nuclear Security Administration facility. The method was recently revealed at the SPIE Photonics Meeting in San Jose, Calif. "I know of no one, anywhere else, who can do this kind of testing," says Sandia innovator Steve Thornberg. John Maciel agrees. Chief Operating Officer of Radant MEMS, a three-year-old start-up company in Stow, Mass., he is under contract with DARPA to develop high-reliability MEMS (microelectromechanical) switches for microwave devices and phased array antennas. He also sees markets for his MEMS switches in cell phones. For long-term reliability, small-atmosphere stability is a must. "We can’t go to a commercial house to get this work done," he says. "We can’t find the capability anywhere else but Sandia."

The Sandia method - funded by its Laboratory-Directed Research and Development program, and presented for consideration to Sandia’s patent office - involves a small commercial valve that comes down like a trash compactor and crushes a tiny device until it releases its gases - currently, about 30 nanoliters - into a custom-built intake manifold. Because Thornberg’s test mechanism requires only picoliters, his sensitive device can recheck its own measurements - using bursts of gas delivered in a series of puffs - dozens of times from the same crushed device in a 20-minute time span. The method thus provides statistically significant atmospheric measurements at any given moment in a component’s life cycle. (Current industry tests can achieve at best only a single reading from the release of nanoliters of gas. A single, statistically unverified result may contain significant error.)

By waiting a longer period of time - weeks, or even months - other microdevices from the same batch can be crushed and then analyzed to see what changes have occurred in their atmosphere over time. Currently, the system is able to measure gasses emerging in pressures ranging from one atmosphere to .0001 torr. (One atmosphere is 760 torr.) The group hopes soon to decrease its lower sensitivity limit to .000001 torr - in effect, to be able to measure the quality of vacuums.

Says Sandia researcher Danelle Tanner, who describes herself as "a reliability-and-aging mechanism physicist" working on a silicon re-entry switch, "We want 100 percent nitrogen [atmosphere] in our device. Steve’s group gave us a really good idea of what species other than nitrogen were present in the package." "Maintaining the integrity of the internal atmosphere of a hermetic device is essential for long-term component reliability," says Thornberg. "It is within this environment that all internal materials age." Success of his group’s new investigatory technique lies in the details of the test mechanism.

A precisely machined sample holder holds the MEMS package to be crushed within the sampler valve. If the sample holder is too low, the part would not crush the MEMS device; too high, and the device would crush prematurely, letting gases escape unmeasured. Because tested devices come in many sizes, height adjustments to the crushing mechanisms are needed for each sample.

The problem of debris from the smashed part interfering with gases that must pass through tiny tubes was solved by sintering a filter into a central gasket. Perhaps most important, manifold volumes were minimized to maximize pressures when MEMS-released gases expand, reducing the amount of gas needed for an analyzable puff. Still ahead is success in measuring very small amounts of moisture, which stick to manifold walls without making it to the detector.

To overcome this problem, the Sandia group is working with Savannah River National Laboratory to incorporate that lab’s optical moisture measurement techniques based on surface plasmon resonance (SPR). In that technique, an optical fiber is used to transmit light from a specially coated lens. Moisture levels are measured from wavelength shifts.

Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>