Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sampling ’small atmospheres’ in the tiny new worlds of MEMS


Sandia gas sampling device rapidly determines whether MEMS seals are effective

Just as astronomers want to understand the atmospheres of planets and moons, so engineers want atmospheric knowledge of worlds they create that are the size of pinheads, their "skies" capped by tiny glass bubbles.

Should their silicon inhabitants - microcircuits, microgears, and micropower drivers - exist in a vacuum? An atmosphere of nitrogen? Air as we know it? More importantly, whatever atmosphere was intended, how long will it stay that way? Is the protective barrier hermetic or will its atmosphere change over time, potentially leading to the early death of the device? Will water vapor seep in, its sticky molecules causing unpredictable behavior? What, in short, can we say about how long this little world and its inhabitants will survive and function?

The most advanced sampling procedure known - requiring only picoliters of gas to evaluate the contents of these small atmospheres - is now in place at Sandia National Laboratories, a National Nuclear Security Administration facility. The method was recently revealed at the SPIE Photonics Meeting in San Jose, Calif. "I know of no one, anywhere else, who can do this kind of testing," says Sandia innovator Steve Thornberg. John Maciel agrees. Chief Operating Officer of Radant MEMS, a three-year-old start-up company in Stow, Mass., he is under contract with DARPA to develop high-reliability MEMS (microelectromechanical) switches for microwave devices and phased array antennas. He also sees markets for his MEMS switches in cell phones. For long-term reliability, small-atmosphere stability is a must. "We can’t go to a commercial house to get this work done," he says. "We can’t find the capability anywhere else but Sandia."

The Sandia method - funded by its Laboratory-Directed Research and Development program, and presented for consideration to Sandia’s patent office - involves a small commercial valve that comes down like a trash compactor and crushes a tiny device until it releases its gases - currently, about 30 nanoliters - into a custom-built intake manifold. Because Thornberg’s test mechanism requires only picoliters, his sensitive device can recheck its own measurements - using bursts of gas delivered in a series of puffs - dozens of times from the same crushed device in a 20-minute time span. The method thus provides statistically significant atmospheric measurements at any given moment in a component’s life cycle. (Current industry tests can achieve at best only a single reading from the release of nanoliters of gas. A single, statistically unverified result may contain significant error.)

By waiting a longer period of time - weeks, or even months - other microdevices from the same batch can be crushed and then analyzed to see what changes have occurred in their atmosphere over time. Currently, the system is able to measure gasses emerging in pressures ranging from one atmosphere to .0001 torr. (One atmosphere is 760 torr.) The group hopes soon to decrease its lower sensitivity limit to .000001 torr - in effect, to be able to measure the quality of vacuums.

Says Sandia researcher Danelle Tanner, who describes herself as "a reliability-and-aging mechanism physicist" working on a silicon re-entry switch, "We want 100 percent nitrogen [atmosphere] in our device. Steve’s group gave us a really good idea of what species other than nitrogen were present in the package." "Maintaining the integrity of the internal atmosphere of a hermetic device is essential for long-term component reliability," says Thornberg. "It is within this environment that all internal materials age." Success of his group’s new investigatory technique lies in the details of the test mechanism.

A precisely machined sample holder holds the MEMS package to be crushed within the sampler valve. If the sample holder is too low, the part would not crush the MEMS device; too high, and the device would crush prematurely, letting gases escape unmeasured. Because tested devices come in many sizes, height adjustments to the crushing mechanisms are needed for each sample.

The problem of debris from the smashed part interfering with gases that must pass through tiny tubes was solved by sintering a filter into a central gasket. Perhaps most important, manifold volumes were minimized to maximize pressures when MEMS-released gases expand, reducing the amount of gas needed for an analyzable puff. Still ahead is success in measuring very small amounts of moisture, which stick to manifold walls without making it to the detector.

To overcome this problem, the Sandia group is working with Savannah River National Laboratory to incorporate that lab’s optical moisture measurement techniques based on surface plasmon resonance (SPR). In that technique, an optical fiber is used to transmit light from a specially coated lens. Moisture levels are measured from wavelength shifts.

Neal Singer | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Novel light sources made of 2D materials
28.10.2016 | Julius-Maximilians-Universität Würzburg

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>