Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superglue of planet formation: Sticky ice

09.03.2005


Pacific Northwest National Lab experiments point to clingy grains of ice to solve age-old mystery of how primordial dust pulled together to form planets



How dust specks in the early solar systems came together to become planets has vexed astronomers for years. Gravity, always an attractive candidate to explain how celestial matter pulls together, was no match for stellar winds. The dust needed help coming together fast, in kilometer-wide protoplanets, in the first few million years after a star was born, or the stellar wind would blow it all away.

Scientists at the Department of Energy’s Pacific Northwest National Laboratory, reporting in the current issue of Astrophysical Journal, offer a cool answer to the planet- formation riddle: Micron-wide dust particles encrusted with molecularly gluey ice enabled planets to bulk up like dirty snowballs quickly enough to overcome the scattering force of solar winds. "People who had calculated the stickiness of dust grains found that the grains didn’t stick," said James Cowin, PNNL lab fellow who led the research. "They bounce, like two billiard balls smacked together. The attraction just wasn’t strong enough."


Cowin’s team has spent years studying, among other things, the chemical and physical properties atmospheric dust and water ice, using an array of instruments suited to the task at the PNNL-based W.R. Wiley Environmental Molecular Sciences Laboratory.

Much of the pre-planetary dust grains were either covered by or largely composed of water ice, having condensed at temperatures close to absolute zero, at 5 to 100 Kelvin. Evidence of this icy solar system can be seen in comets, and planets and moons a Jupiter’s distance from its star and beyond are icy. "This ice is very different from the stuff we chip off our windows in winter," Cowin said. "For example, we saw that at extreme cold temperatures vapor-deposited ice spontaneously becomes electrically polarized. This makes electric forces that could stick icy grains together like little bar magnets."

PNNL staff scientist Martin Iedema, a member of Cowin’s group with an astronomy undergraduate degree, surveyed the astrophysics literature and found that the planet growth mystery resided in the same cold temperatures of the lab ices.

Iedema found that the high background radiation in the early solar system would have neutralized a polarized, micron-sized ice grain in days to weeks--or hundreds of thousands of years before it could accrete a critical mass of material and grow to the size of a medicine ball, enabling it to get over the critical size hurdle in planet formation.

But, Iedema said, ice grains colliding into each other would have chipped and broken in two to upset electrical equilibrium and, in essence, recharging the ice grains and restoring their clinginess. Then he discovered an additional feature that gave the sticky ice theory a new bounce. "More of an anti-bounce," Cowin emended, "from the cushioning, or fluffiness, of this ice. The more technical phrase is ’mechanical inelasticity.’ We knew that ice, when grown so cold, isn’t able to arrange its molecules in a well-ordered fashion; it becomes fluffy on a molecular scale."

Cowin conjured an image of "billiard balls made of Rice Krispies." Such balls would barely bounce. "Colliding fluffy ice grains would have enough residual electrical forces to make them stick, and survive subsequent collisions to grow into large lumps."

To test this, PNNL postdocs Rich Bell and Hanfu Wang grew ice from the vapor in a chamber that reproduced primordial temperatures and vacuum. They measured bounce by dropping hard, 1/16th- inch hard ceramic balls on it. With a high-speed camera, they observed the balls consistently rebound about 8 percent of their dropped height from fluffy ice grown at 40 Kelvin, whereas on the hard, warmer and much more compact ice that forms naturally on Earth, the ice rebound was as high as 80 percent.

"This huge inelasticity provides an ideal way for fluffy icy grains to stick and grow eventually to protoplanets," Cowin said. Cowin and colleagues further speculate that similar electrical forces, minus the fluffy cushioning, were at work during the infancy of hotter inner planets like Earth, involving silicate dust grains instead of ice.

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>