Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superglue of planet formation: Sticky ice

09.03.2005


Pacific Northwest National Lab experiments point to clingy grains of ice to solve age-old mystery of how primordial dust pulled together to form planets



How dust specks in the early solar systems came together to become planets has vexed astronomers for years. Gravity, always an attractive candidate to explain how celestial matter pulls together, was no match for stellar winds. The dust needed help coming together fast, in kilometer-wide protoplanets, in the first few million years after a star was born, or the stellar wind would blow it all away.

Scientists at the Department of Energy’s Pacific Northwest National Laboratory, reporting in the current issue of Astrophysical Journal, offer a cool answer to the planet- formation riddle: Micron-wide dust particles encrusted with molecularly gluey ice enabled planets to bulk up like dirty snowballs quickly enough to overcome the scattering force of solar winds. "People who had calculated the stickiness of dust grains found that the grains didn’t stick," said James Cowin, PNNL lab fellow who led the research. "They bounce, like two billiard balls smacked together. The attraction just wasn’t strong enough."


Cowin’s team has spent years studying, among other things, the chemical and physical properties atmospheric dust and water ice, using an array of instruments suited to the task at the PNNL-based W.R. Wiley Environmental Molecular Sciences Laboratory.

Much of the pre-planetary dust grains were either covered by or largely composed of water ice, having condensed at temperatures close to absolute zero, at 5 to 100 Kelvin. Evidence of this icy solar system can be seen in comets, and planets and moons a Jupiter’s distance from its star and beyond are icy. "This ice is very different from the stuff we chip off our windows in winter," Cowin said. "For example, we saw that at extreme cold temperatures vapor-deposited ice spontaneously becomes electrically polarized. This makes electric forces that could stick icy grains together like little bar magnets."

PNNL staff scientist Martin Iedema, a member of Cowin’s group with an astronomy undergraduate degree, surveyed the astrophysics literature and found that the planet growth mystery resided in the same cold temperatures of the lab ices.

Iedema found that the high background radiation in the early solar system would have neutralized a polarized, micron-sized ice grain in days to weeks--or hundreds of thousands of years before it could accrete a critical mass of material and grow to the size of a medicine ball, enabling it to get over the critical size hurdle in planet formation.

But, Iedema said, ice grains colliding into each other would have chipped and broken in two to upset electrical equilibrium and, in essence, recharging the ice grains and restoring their clinginess. Then he discovered an additional feature that gave the sticky ice theory a new bounce. "More of an anti-bounce," Cowin emended, "from the cushioning, or fluffiness, of this ice. The more technical phrase is ’mechanical inelasticity.’ We knew that ice, when grown so cold, isn’t able to arrange its molecules in a well-ordered fashion; it becomes fluffy on a molecular scale."

Cowin conjured an image of "billiard balls made of Rice Krispies." Such balls would barely bounce. "Colliding fluffy ice grains would have enough residual electrical forces to make them stick, and survive subsequent collisions to grow into large lumps."

To test this, PNNL postdocs Rich Bell and Hanfu Wang grew ice from the vapor in a chamber that reproduced primordial temperatures and vacuum. They measured bounce by dropping hard, 1/16th- inch hard ceramic balls on it. With a high-speed camera, they observed the balls consistently rebound about 8 percent of their dropped height from fluffy ice grown at 40 Kelvin, whereas on the hard, warmer and much more compact ice that forms naturally on Earth, the ice rebound was as high as 80 percent.

"This huge inelasticity provides an ideal way for fluffy icy grains to stick and grow eventually to protoplanets," Cowin said. Cowin and colleagues further speculate that similar electrical forces, minus the fluffy cushioning, were at work during the infancy of hotter inner planets like Earth, involving silicate dust grains instead of ice.

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

Beyond the limits of conventional electronics: stable organic molecular nanowires

24.05.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>