Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superglue of planet formation: Sticky ice

09.03.2005


Pacific Northwest National Lab experiments point to clingy grains of ice to solve age-old mystery of how primordial dust pulled together to form planets



How dust specks in the early solar systems came together to become planets has vexed astronomers for years. Gravity, always an attractive candidate to explain how celestial matter pulls together, was no match for stellar winds. The dust needed help coming together fast, in kilometer-wide protoplanets, in the first few million years after a star was born, or the stellar wind would blow it all away.

Scientists at the Department of Energy’s Pacific Northwest National Laboratory, reporting in the current issue of Astrophysical Journal, offer a cool answer to the planet- formation riddle: Micron-wide dust particles encrusted with molecularly gluey ice enabled planets to bulk up like dirty snowballs quickly enough to overcome the scattering force of solar winds. "People who had calculated the stickiness of dust grains found that the grains didn’t stick," said James Cowin, PNNL lab fellow who led the research. "They bounce, like two billiard balls smacked together. The attraction just wasn’t strong enough."


Cowin’s team has spent years studying, among other things, the chemical and physical properties atmospheric dust and water ice, using an array of instruments suited to the task at the PNNL-based W.R. Wiley Environmental Molecular Sciences Laboratory.

Much of the pre-planetary dust grains were either covered by or largely composed of water ice, having condensed at temperatures close to absolute zero, at 5 to 100 Kelvin. Evidence of this icy solar system can be seen in comets, and planets and moons a Jupiter’s distance from its star and beyond are icy. "This ice is very different from the stuff we chip off our windows in winter," Cowin said. "For example, we saw that at extreme cold temperatures vapor-deposited ice spontaneously becomes electrically polarized. This makes electric forces that could stick icy grains together like little bar magnets."

PNNL staff scientist Martin Iedema, a member of Cowin’s group with an astronomy undergraduate degree, surveyed the astrophysics literature and found that the planet growth mystery resided in the same cold temperatures of the lab ices.

Iedema found that the high background radiation in the early solar system would have neutralized a polarized, micron-sized ice grain in days to weeks--or hundreds of thousands of years before it could accrete a critical mass of material and grow to the size of a medicine ball, enabling it to get over the critical size hurdle in planet formation.

But, Iedema said, ice grains colliding into each other would have chipped and broken in two to upset electrical equilibrium and, in essence, recharging the ice grains and restoring their clinginess. Then he discovered an additional feature that gave the sticky ice theory a new bounce. "More of an anti-bounce," Cowin emended, "from the cushioning, or fluffiness, of this ice. The more technical phrase is ’mechanical inelasticity.’ We knew that ice, when grown so cold, isn’t able to arrange its molecules in a well-ordered fashion; it becomes fluffy on a molecular scale."

Cowin conjured an image of "billiard balls made of Rice Krispies." Such balls would barely bounce. "Colliding fluffy ice grains would have enough residual electrical forces to make them stick, and survive subsequent collisions to grow into large lumps."

To test this, PNNL postdocs Rich Bell and Hanfu Wang grew ice from the vapor in a chamber that reproduced primordial temperatures and vacuum. They measured bounce by dropping hard, 1/16th- inch hard ceramic balls on it. With a high-speed camera, they observed the balls consistently rebound about 8 percent of their dropped height from fluffy ice grown at 40 Kelvin, whereas on the hard, warmer and much more compact ice that forms naturally on Earth, the ice rebound was as high as 80 percent.

"This huge inelasticity provides an ideal way for fluffy icy grains to stick and grow eventually to protoplanets," Cowin said. Cowin and colleagues further speculate that similar electrical forces, minus the fluffy cushioning, were at work during the infancy of hotter inner planets like Earth, involving silicate dust grains instead of ice.

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>