Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulations reveal surprising news about black holes

08.03.2005


Computer reveals that life around black holes is turbulent and violent


Computer simulations of how black holes swallow matter show surprising violence and turbulence.



For more than 30 years, astrophysicists have believed that black holes can swallow nearby matter and release a tremendous amount of energy as a result. Until recently, however, the mechanisms that bring matter close to black holes have been poorly understood, leaving researchers puzzled about many of the details of the process.

Now, however, computer simulations of black holes developed by researchers, including two at The Johns Hopkins University, are answering some of those questions and challenging many commonly held assumptions about the nature of this enigmatic phenomenon.


"Only recently have members of the research team -- John Hawley and Jean-Pierre De Villiers, both of the University of Virginia -- created a computer program powerful enough to track all the elements of accretion onto black holes, from turbulence and magnetic fields to relativistic gravity," said Julian Krolik, a professor in the Henry A. Rowland Department of Physics and Astronomy at Johns Hopkins and co-leader of the research team. "These programs are opening a new window on the complicated story of how matter falls into black holes, revealing for the first time how tangled magnetic fields and Einsteinian gravity combine to squeeze out a last burst of energy from matter doomed to infinite imprisonment in a black hole."

Close to the black hole’s outer edge, where the Newtonian description of gravity breaks down, ordinary orbits are no longer possible. At that point -- or so it has been imagined for the past three decades -- matter plunges quickly, smoothly and quietly into the black hole. In the end, according to the prevailing picture, the black hole -- except for exerting its gravitational pull -- is a passive recipient of mass donations.

The team’s first realistic calculations of matter falling into black holes have strongly contradicted many of these expectations. They show, for instance, that life in the vicinity of a black hole is anything but calm and quiet. Instead, the relativistic effects that force matter to plunge inward magnify random motions within the fluid to create violent disturbances in density, velocity and magnetic field strength, driving waves of matter and magnetic field to and fro. This violence can have observable consequences, according to research team co-leader Hawley.

"Just like any fluid that has been stirred into turbulence, matter immediately outside the edge of the black hole is heated. This extra heat makes additional light that astronomers on Earth can see," Hawley said. "One of the hallmarks of black holes is that their light output varies. Although this has been known for more than 30 years, it has not been possible to study the origins of these variations until now. The violent variations in heating -- now seen to be a natural byproduct of magnetic forces near the black hole -- offer a natural explanation for black holes’ ever-changing brightness."

One of the most striking properties of a black hole is its ability to expel jets at close to the speed of light. While it has long been expected that magnetic fields are crucial to this process, the latest simulations show for the first time how a field can be expelled from the accreting gas to create such a jet.

Perhaps the most surprising result of the team’s new computer simulations is that the magnetic fields brought near a rotating black hole also couple the hole’s spin to matter orbiting farther out, in the same way that a car’s transmission connects its rotating motor to the axle. Says Krolik, "If a black hole is born spinning extremely rapidly, its ’drive train’ can be so powerful that its capture of additional mass causes its rotation to slow down. Accretion of mass would then act as a ’governor,’ enforcing a cosmic speed limit on black hole spins."

According to Krolik, that "governor" may have strong implications for many of the most striking properties of black holes. It is widely thought, for example, that the strength of a black hole’s jet is related to its spin, so a "spin speed limit" might determine a characteristic strength for the jets, Krolik said.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht Molecules Brilliantly Illuminated
23.04.2018 | Max-Planck-Institut für Quantenoptik

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>