Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jupiter: A cloudy mirror for the Sun?

08.03.2005


Astronomers using the European Space Agency’s XMM-Newton telescope have discovered that observing the giant planet Jupiter may actually give them an insight in to solar activity on the far side of the Sun! In research reported in the most recent edition of Geophysical Research Letters, they discovered that Jupiter’s x-ray glow is due to x-rays from the Sun being reflected back off the planet’s atmosphere.

Jupiter is an intriguing object when viewed in x-rays; it has dramatic x-ray auroras at the poles and a variable x-ray glow from near the equator. Researchers had theorised that these x-rays from the equatorial regions of Jupiter, called disk x-rays, were controlled by the Sun. In November 2003, during a period of high solar activity, they observed Jupiter.

“We found that Jupiter’s day-to-day disk x-rays were synchronised with the Sun’s emissions,” says Dr Anil Bhardwaj, from NASA Marshall Space Flight Centre and lead author on the paper. ”Unfortunately, we missed a relatively large solar flare during the 3.5-days observation due to the perigee passage of the XMM-Newton”. “But, still we were lucky; particularly clear was a signature of a moderate solar flare that went off during the observing period - there was a corresponding brightening of the Jovian disk x-rays”, says Anil Bhardwaj.



In addition to supporting the researchers’ theory, this result has another application - in studying the Sun. The Sun is a very dynamic environment and processes there have an impact on human activities. For example, solar flares (the most powerful explosions in the solar system) can damage satellites or injure astronauts in space, and on Earth they can disrupt radio signals in the atmosphere, so it is important to understand as much as we can about them.

There are several dedicated spacecraft watching the Sun (such as the European Space Agency’s SOHO satellite), as well as ground-based telescopes, but there are gaps in coverage as some areas of the Sun are not visible by any of these means at some times.

“As Jupiter orbits the Sun, we hope to be able to learn more about the active areas of the Sun we can’t see from Earth by watching the Jovian x-ray emissions,” says Dr Graziella Branduardi-Raymont from the University College London’s Mullard Space Science Laboratory. “If a large solar flare occurs on an area of the Sun that is facing Jupiter, we may be able to observe it in light scattered from Jupiter, even if we cannot see that region of the Sun from around the Earth at the time.”

Jupiter’s atmosphere is not a perfect mirror of the Sunlight in X-rays - typically one in a few thousand x-ray photons (packets of light) is reflected back, but the more energetic the photons, the more are reflected into space.

UK participation in this research and the UK subscription to the European Space Agency are funded by the Particle Physics and Astronomy Research Council (PPARC).

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk/Nw/XMM_Jupiter.asp

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>