Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LHC magnets: the great descent

08.03.2005


The first superconducting magnet for the Large Hadron Collider (LHC) was lowered into the accelerator tunnel at 2.00 p.m. on Monday, 7th March. This is the first of the 1232 dipole magnets for the future collider, which measures 27 km in circumference and is scheduled to be commissioned in 2007. The date was thus a key one for CERN since the delivery of the 15 metre long dipole magnet weighing 35 tonnes to its final location marks the start of LHC installation.

The LHC will consist predominantly of superconducting dipole magnets, which are the most complex components of the machine. Their superconducting coil allows them to convey extremely high currents without any loss of energy. They are therefore able to produce very high magnetic fields in order to bend the trajectory of the protons that are accelerated at a speed close to the speed of light. The LHC will thus be the world’s most powerful accelerator. The collisions between the protons will reach energies of 14 teraelectronvolts (TeV), 70 times higher than those of the former LEP collider for which the 27 km tunnel was originally built. To reach the superconducting state, the magnets have to be cooled to a temperature of -271°C, close to absolute zero. If the LHC had been made of conventional magnets, it would have needed to be 120 km long to achieve the same energies and its electricity consumption would have been phenomenal.

These superconducting magnets will all be lowered 50 metres down below the earth’s surface via a specially made shaft of oval cross-section. They will then be conveyed through a transfer tunnel to the LHC tunnel, which lies at a depth varying between 50 and 150 metres. Vehicles travelling at 3 km an hour have been specially designed to deliver the magnets to their final destination. The narrowness of the tunnel complicates these handling operations, making it impossible, for example, for two loads to pass each other.



In addition to the dipole magnets, the LHC will be equipped with hundreds of other, smaller magnets. More than 1800 magnet assemblies will have to be installed. Once in position, the magnets will be connected to the cryogenic system to form a large string operating in superfluid helium, which will maintain the accelerator at a temperature close to absolute zero.

The lowering of this first magnet into the tunnel coincides with another milestone for CERN, namely completion of the delivery of half the superconducting dipole magnets. A total of 616 magnets have been delivered to date, and the same number are due to arrive by autumn 2006. The manufacture of these superconducting magnets represents a huge technical and industrial challenge both for CERN and for European industry. 7000 kilometres of niobium-titanium superconducting cable have had to be produced to make them. Around a hundred companies in Europe are manufacturing the magnet components, and three companies, Babcock Noell Nuclear in Germany, Alstom in France, and Ansaldo in Italy, are responsible for their assembly. The greatest challenge was the move from the prototyping and pre-series phase to large-scale series production, which involved much ground-breaking technology. Success has been achieved, with three industrial sites now able to manufacture between nine and ten magnets a week.

Renilde Vanden Broeck | alfa
Further information:
http://www.cern.ch
http://info.web.cern.ch/Press/PressReleases/Releases2005/PR02.05E1er-aimant.html

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>