Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists work to detect mysterious neutrinos

07.03.2005


Livermore scientists are working to solve a 50-year-old question: Can neutrinos – a particle that is relatively massless, has no electric charge yet is fundamental to the make-up of the universe – transform from one type to another?
Scientists are using two giant detectors, one at Fermi Lab and another in a historic iron mine in northern Minnesota, to work on the answer.

As part of the international team working on the Main Injector Neutrino Oscillation Search (MINOS) project, Lawrence Livermore National Laboratory researchers will use the detectors to explore the mysterious nature and properties of neutrinos. Namely, they will seek to discover how neutrinos "change flavors."


Neutrinos come in three "flavors:" electron, muon and tau. Each is related to a charged particle, which gives the corresponding neutrino its name. Neutrinos are extremely difficult to detect because they rarely interact with anything. Though they can easily pass through a planet, solid walls and even a human hand, they rarely leave a trace of their existence. "The probability of a neutrino interacting with anything is very small," said LLNL’s Peter Barnes, who along with Livermore’s Doug Wright and Ed Hartouni, is working on the MINOS experiment. "If you want to detect any neutrinos, you need something big."

Barnes, Wright and Hartouni are hoping that something big is a 6,000-ton detector lying deep in the Soudan, Minn. mine. The neutrinos will be generated along the underground beam line at Fermi Lab, will pass through the near detector at Fermi, and will travel through the Earth to the detector in Minnesota. Neutrinos are more easily detected when they are generated at a high energy (such as those at Fermi Lab).

The MINOS scientists chose the distance to the far detector to maximize the oscillation probability, which gives them the best opportunity to directly study the neutrino "flavor change."

Fusion in the sun results in electron neutrinos and scientists have predicted that if they can measure the electron neutrinos coming from the sun, they can measure the core of the sun. However, early experiments showed that less than half the expected neutrinos were observed on Earth. The idea that the missing electron neutrinos may have transformed into another type or "flavor" came alive.

This conclusion indicates that neutrinos do have some mass, small as it may be, in order for them to oscillate. So a portion of the electron neutrinos emitted from the sun could have changed flavors to muon or tau neutrinos before reaching Earth, thus solving the missing neutrino problem.

But it still doesn’t explain how or why this occurs, Barnes said. "Our goal is to understand the flavor oscillation properties of neutrinos," he said.

Studying the elusive neutrino will help scientists better understand particle physics, specifically how particles acquire mass, as well as its role in the formation of the universe and its relationship to dark matter.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>