Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Construction materials for space stations

04.03.2005


Antenna and telescope mirrors, walls and partitions for space stations, solar battery panels and even houses on the Moon and on Mars – all this can be achieved with technology developed by Russian scientists in the framework of ISTC projects 2835 and 2836. What is more, it can be achieved quickly, with good levels of strength and reliability, with minimal expense of time, space, energy and money.



These construction materials or, to be more accurate, original semi-products for future structures, are brought into space in compact, hermetically-sealed containers. The half-finished product is connected to a compressed gas cylinder and inflated on site. In just a few hours the soft, moist fabric becomes a rigid, strong material in the form of a table, partition or antenna.

Using these pneumatic setting structures in space is the idea of specialists from the Babakin Scientific Research Center and NPO Lavochkin. And they propose that modules of space stations be built from these light yet sturdy materials, initially for orbital stations, but in future moving to lunar and Martian examples. Of course we are not talking about covering panels for spacecraft or roofs for houses, but of internal partitions, walls, and three-dimensional structures such as solar battery panels, antennae and telescope mirrors.


One of the greatest problems of construction in space, whatever is being built, is the supply of materials and structural details. Entire cumbersome designs simply do not fit into a spacecraft, which means they have to be carried in parts and then assembled in orbit. And this is incredibly difficult, especially for designs that require a particularly precise assembly. Primarily this applies to parabolic antennae and telescope mirrors; their diameter is measured in tens of meters and any distortion in their surface could lead to errors, sometimes of an irreparable nature.

“In essence our technology is simple,” say the developers. “We form the future product from a special fabric, light and strong; what is important is that we do it all on Earth. We give it the required form, in a process that is strictly controlled. We place inside the structure something akin to a rubber inner bladder, such as you would find inside a football. Then we impregnate the material with a special solution. The semi-product for a future antenna is now ready. Now all that is needed is to pack it up, seal it hermetically, send it to its destination and then inflate it.”

The essence lies in the fact that, when it dries the solution sets, turning the material it has impregnated into a strong, rigid, non-combustible shell. In space, in an airless environment, the water will vanish by itself, without the need for additional assistance. And the compressed gas will fulfill a double task: it will unfurl the product and give it its shape. So there is no need for additional expense on energy to inflate the structure or to fix its shape.

These pneumatic setting structures have not been in space yet. The scientists are optimizing the composition of the solution, selecting the best materials for the base and specifying the details of the technology with greater precision. But it is clear even today that in terms of strength the new materials are no worse than traditional ones, while they are several times lighter.

Olga Myznikova | alfa
Further information:
http://www.istc.ru

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>