Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Construction materials for space stations

04.03.2005


Antenna and telescope mirrors, walls and partitions for space stations, solar battery panels and even houses on the Moon and on Mars – all this can be achieved with technology developed by Russian scientists in the framework of ISTC projects 2835 and 2836. What is more, it can be achieved quickly, with good levels of strength and reliability, with minimal expense of time, space, energy and money.



These construction materials or, to be more accurate, original semi-products for future structures, are brought into space in compact, hermetically-sealed containers. The half-finished product is connected to a compressed gas cylinder and inflated on site. In just a few hours the soft, moist fabric becomes a rigid, strong material in the form of a table, partition or antenna.

Using these pneumatic setting structures in space is the idea of specialists from the Babakin Scientific Research Center and NPO Lavochkin. And they propose that modules of space stations be built from these light yet sturdy materials, initially for orbital stations, but in future moving to lunar and Martian examples. Of course we are not talking about covering panels for spacecraft or roofs for houses, but of internal partitions, walls, and three-dimensional structures such as solar battery panels, antennae and telescope mirrors.


One of the greatest problems of construction in space, whatever is being built, is the supply of materials and structural details. Entire cumbersome designs simply do not fit into a spacecraft, which means they have to be carried in parts and then assembled in orbit. And this is incredibly difficult, especially for designs that require a particularly precise assembly. Primarily this applies to parabolic antennae and telescope mirrors; their diameter is measured in tens of meters and any distortion in their surface could lead to errors, sometimes of an irreparable nature.

“In essence our technology is simple,” say the developers. “We form the future product from a special fabric, light and strong; what is important is that we do it all on Earth. We give it the required form, in a process that is strictly controlled. We place inside the structure something akin to a rubber inner bladder, such as you would find inside a football. Then we impregnate the material with a special solution. The semi-product for a future antenna is now ready. Now all that is needed is to pack it up, seal it hermetically, send it to its destination and then inflate it.”

The essence lies in the fact that, when it dries the solution sets, turning the material it has impregnated into a strong, rigid, non-combustible shell. In space, in an airless environment, the water will vanish by itself, without the need for additional assistance. And the compressed gas will fulfill a double task: it will unfurl the product and give it its shape. So there is no need for additional expense on energy to inflate the structure or to fix its shape.

These pneumatic setting structures have not been in space yet. The scientists are optimizing the composition of the solution, selecting the best materials for the base and specifying the details of the technology with greater precision. But it is clear even today that in terms of strength the new materials are no worse than traditional ones, while they are several times lighter.

Olga Myznikova | alfa
Further information:
http://www.istc.ru

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>