Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Construction materials for space stations

04.03.2005


Antenna and telescope mirrors, walls and partitions for space stations, solar battery panels and even houses on the Moon and on Mars – all this can be achieved with technology developed by Russian scientists in the framework of ISTC projects 2835 and 2836. What is more, it can be achieved quickly, with good levels of strength and reliability, with minimal expense of time, space, energy and money.



These construction materials or, to be more accurate, original semi-products for future structures, are brought into space in compact, hermetically-sealed containers. The half-finished product is connected to a compressed gas cylinder and inflated on site. In just a few hours the soft, moist fabric becomes a rigid, strong material in the form of a table, partition or antenna.

Using these pneumatic setting structures in space is the idea of specialists from the Babakin Scientific Research Center and NPO Lavochkin. And they propose that modules of space stations be built from these light yet sturdy materials, initially for orbital stations, but in future moving to lunar and Martian examples. Of course we are not talking about covering panels for spacecraft or roofs for houses, but of internal partitions, walls, and three-dimensional structures such as solar battery panels, antennae and telescope mirrors.


One of the greatest problems of construction in space, whatever is being built, is the supply of materials and structural details. Entire cumbersome designs simply do not fit into a spacecraft, which means they have to be carried in parts and then assembled in orbit. And this is incredibly difficult, especially for designs that require a particularly precise assembly. Primarily this applies to parabolic antennae and telescope mirrors; their diameter is measured in tens of meters and any distortion in their surface could lead to errors, sometimes of an irreparable nature.

“In essence our technology is simple,” say the developers. “We form the future product from a special fabric, light and strong; what is important is that we do it all on Earth. We give it the required form, in a process that is strictly controlled. We place inside the structure something akin to a rubber inner bladder, such as you would find inside a football. Then we impregnate the material with a special solution. The semi-product for a future antenna is now ready. Now all that is needed is to pack it up, seal it hermetically, send it to its destination and then inflate it.”

The essence lies in the fact that, when it dries the solution sets, turning the material it has impregnated into a strong, rigid, non-combustible shell. In space, in an airless environment, the water will vanish by itself, without the need for additional assistance. And the compressed gas will fulfill a double task: it will unfurl the product and give it its shape. So there is no need for additional expense on energy to inflate the structure or to fix its shape.

These pneumatic setting structures have not been in space yet. The scientists are optimizing the composition of the solution, selecting the best materials for the base and specifying the details of the technology with greater precision. But it is clear even today that in terms of strength the new materials are no worse than traditional ones, while they are several times lighter.

Olga Myznikova | alfa
Further information:
http://www.istc.ru

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>