Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Construction materials for space stations

04.03.2005


Antenna and telescope mirrors, walls and partitions for space stations, solar battery panels and even houses on the Moon and on Mars – all this can be achieved with technology developed by Russian scientists in the framework of ISTC projects 2835 and 2836. What is more, it can be achieved quickly, with good levels of strength and reliability, with minimal expense of time, space, energy and money.



These construction materials or, to be more accurate, original semi-products for future structures, are brought into space in compact, hermetically-sealed containers. The half-finished product is connected to a compressed gas cylinder and inflated on site. In just a few hours the soft, moist fabric becomes a rigid, strong material in the form of a table, partition or antenna.

Using these pneumatic setting structures in space is the idea of specialists from the Babakin Scientific Research Center and NPO Lavochkin. And they propose that modules of space stations be built from these light yet sturdy materials, initially for orbital stations, but in future moving to lunar and Martian examples. Of course we are not talking about covering panels for spacecraft or roofs for houses, but of internal partitions, walls, and three-dimensional structures such as solar battery panels, antennae and telescope mirrors.


One of the greatest problems of construction in space, whatever is being built, is the supply of materials and structural details. Entire cumbersome designs simply do not fit into a spacecraft, which means they have to be carried in parts and then assembled in orbit. And this is incredibly difficult, especially for designs that require a particularly precise assembly. Primarily this applies to parabolic antennae and telescope mirrors; their diameter is measured in tens of meters and any distortion in their surface could lead to errors, sometimes of an irreparable nature.

“In essence our technology is simple,” say the developers. “We form the future product from a special fabric, light and strong; what is important is that we do it all on Earth. We give it the required form, in a process that is strictly controlled. We place inside the structure something akin to a rubber inner bladder, such as you would find inside a football. Then we impregnate the material with a special solution. The semi-product for a future antenna is now ready. Now all that is needed is to pack it up, seal it hermetically, send it to its destination and then inflate it.”

The essence lies in the fact that, when it dries the solution sets, turning the material it has impregnated into a strong, rigid, non-combustible shell. In space, in an airless environment, the water will vanish by itself, without the need for additional assistance. And the compressed gas will fulfill a double task: it will unfurl the product and give it its shape. So there is no need for additional expense on energy to inflate the structure or to fix its shape.

These pneumatic setting structures have not been in space yet. The scientists are optimizing the composition of the solution, selecting the best materials for the base and specifying the details of the technology with greater precision. But it is clear even today that in terms of strength the new materials are no worse than traditional ones, while they are several times lighter.

Olga Myznikova | alfa
Further information:
http://www.istc.ru

More articles from Physics and Astronomy:

nachricht Could a particle accelerator using laser-driven implosion become a reality?
24.05.2018 | Osaka University

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Could a particle accelerator using laser-driven implosion become a reality?

24.05.2018 | Physics and Astronomy

Hot cars can hit deadly temperatures in as little as one hour

24.05.2018 | Health and Medicine

Complementing conventional antibiotics

24.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>