Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers detect powerful bursting radio source

03.03.2005


Discovery points to new class of astronomical objects



Astronomers at Sweet Briar College and the Naval Research Laboratory (NRL) have detected a powerful new bursting radio source whose unique properties suggest the discovery of a new class of astronomical objects. The researchers have monitored the center of the Milky Way Galaxy for several years and reveal their findings in the March 3, 2005 edition of the journal, "Nature."

Principal investigator, Dr. Scott Hyman, professor of physics at Sweet Briar College, said the discovery came after analyzing some additional observations from 2002 provided by researchers at Northwestern University. "We hit the jackpot!" Hyman said referring to the observations. "An image of the Galactic center, made by collecting radio waves of about 1-meter in wavelength, revealed multiple bursts from the source during a seven-hour period from Sept. 30 to Oct. 1, 2002 – five bursts in fact, and repeating at remarkably constant intervals."


Hyman, four Sweet Briar students, and his NRL collaborators, Drs. Namir Kassim and Joseph Lazio, happened upon transient emission from two radio sources while studying the Galactic center in 1998. This prompted the team to propose an ongoing monitoring program using the National Science Foundation’s Very Large Array (VLA) radio telescope in New Mexico. The National Radio Astronomy Observatory, which operates the VLA, approved the program. The data collected, laid the groundwork for the detection of the new radio source. "Amazingly, even though the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths," NRL astronomer Dr. Joseph Lazio pointed out, "very little has been done to look for radio bursts, which are often easier for astronomical objects to produce."

The team has monitored the Galactic center for new transient sources and for variability in approximately 250 known sources, but the five bursts from the new radio source, named GCRT J1745-3009, were by far the most powerful seen. The five bursts were of equal brightness, with each lasting about 10 minutes, and occurring every 77 minutes. The source of the bursts is transient Hyman noted. "It has not been detected since 2002 nor is it present on earlier images."

Although the exact nature of the object remains a mystery, the team members currently believe that GCRT J1745-3009 is either the first member of a new class of objects or an unknown mode of activity of a known source class.

One important clue to understanding the origin of the radio bursts is that the emission appears to be "coherent," Hyman said. "There are very few classes of coherent emitters in the universe. Natural astronomical masers -- the analog of laser emission at microwave wavelengths -- are one class of coherent sources, but these emit in specific wavelengths. In contrast, the new transient’s bursts were detected over a relatively large bandwidth."

In addition to these intriguing properties, NRL astronomer Dr. Paul Ray and colleague, Dr. Craig Markwardt of NASA’s Goddard Space Flight Center, have searched the source for X-ray emission but have not found any convincing evidence. "The non-detection of X-ray emission is intriguing," Ray said. "Many sources that emit transient X-ray flares, such as black hole binary star systems, also have associated radio emission. If upon further observations, X-ray emission is definitively detected or ruled out, this will be a significant help in understanding the nature of this remarkable source."

"Needless to say, the discovery of these transients has been very exciting for our students," Hyman added. Participating in this research program has inspired at least two of Hyman’s students -- Jennifer Neureuther and Mariana Lazarova -- to pursue graduate studies in astronomy.

This project was supported at Sweet Briar College by funding from Research Corporation and the Jeffress Foundation. Basic research in radio astronomy at NRL is supported by the Office of Naval Research.

Further Research

Hyman and his NRL colleagues plan to continue monitoring the Galactic center and search for the source again with the VLA and other X-ray and radio telescopes. They are also developing (with Dr. Kent Wood of NRL) a model that attempts to account for the radio bursts as a new type of outburst from a class of sources known as "magnetars."

NRL is also contributing to an effort to build the world’s largest and most sensitive low-frequency telescope, called the Long Wavelength Array (LWA), which may revolutionize future searches for other radio transient sources. Current plans call for the LWA, which is being developed by the University of New Mexico-led Southwest Consortium, to be sited in New Mexico, not far from the VLA. "One of the key advantages of observing at long radio wavelengths," explained NRL astronomer, Dr. Namir Kassim, "is that the field-of-view is so large that a single observation can efficiently detect transient phenomena over a large region."

"When completed, the LWA may uncover hundreds of previously unknown radio transients, some of which may be examples of Jupiter-like planets orbiting other stars," Kassim added. Jupiter is the most famous example of a nearby radio transient.

Janice Schultz | EurekAlert!
Further information:
http://www.ccs.nrl.navy.mil

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>