Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum computers may be easier to build than predicted

03.03.2005


The new NIST architecture for quantum computing relies on several levels of error checking to ensure the accuracy of quantum bits (qubits). The image above illustrates how qubits are grouped in blocks to form the levels. To implement the architecture with three levels, a series of operations is performed on 36 qubits (bottom row)each one representing either a 1, a 0, or both at once. The operations on the nine sets of qubits produce two reliably accurate qubits (top row). The purple spheres represent qubits that are either used in error detection or in actual computations. The yellow spheres are qubits that are measured to detect or correct errors but are not used in final computations.


A full-scale quantum computer could produce reliable results even if its components performed no better than today’s best first-generation prototypes, according to a paper in the March 3 issue in the journal Nature* by a scientist at the Commerce Department’s National Institute of Standards and Technology (NIST).

In theory, such a quantum computer could be used to break commonly used encryption codes, to improve optimization of complex systems such as airline schedules, and to simulate other complex quantum systems.

A key issue for the reliability of future quantum computers--which would rely on the unusual properties of nature’s smallest particles to store and process data--is the fragility of quantum states. Today’s computers use millions of transistors that are switched on or off to reliably represent values of 1 or 0. Quantum computers would use atoms, for example, as quantum bits (qubits), whose magnetic and other properties would be manipulated to represent 1 or 0 or even both at the same time. These states are so delicate that qubit values would be unusually susceptible to errors caused by the slightest electronic "noise."



To get around this problem, NIST scientist Emanuel Knill suggests using a pyramid-style hierarchy of qubits made of smaller and simpler building blocks than envisioned previously, and teleportation of data at key intervals to continuously double-check the accuracy of qubit values. Teleportation was demonstrated last year by NIST physicists, who transferred key properties of one atom to another atom without using a physical link.

"There has been a tremendous gap between theory and experiment in quantum computing," Knill says. "It is as if we were designing today’s supercomputers in the era of vacuum tube computing, before the invention of transistors. This work reduces the gap, showing that building quantum computers may be easier than we thought. However, it will still take a lot of work to build a useful quantum computer."

Use of Knill’s architecture could lead to reliable computing even if individual logic operations made errors as often as 3 percent of the time--performance levels already achieved in NIST laboratories with qubits based on ions (charged atoms). The proposed architecture could tolerate several hundred times more errors than scientists had generally thought acceptable.

Knill’s findings are based on several months of calculations and simulations on large, conventional computer workstations. The new architecture, which has yet to be validated by mathematical proofs or tested in the laboratory, relies on a series of simple procedures for repeatedly checking the accuracy of blocks of qubits. This process creates a hierarchy of qubits at various levels of validation.

For instance, to achieve relatively low error probabilities in moderately long computations, 36 qubits would be processed in three levels to arrive at one corrected pair. Only the top-tier, or most accurate, qubits are actually used for computations. The more levels there are, the more reliable the computation will be.

Knill’s methods for detecting and correcting errors rely heavily on teleportation. Teleportation enables scientists to measure how errors have affected a qubit’s value while transferring the stored information to other qubits not yet perturbed by errors. The original qubit’s quantum properties would be teleported to another qubit as the original qubit is measured.

The new architecture allows trade-offs between error rates and computing resource demands. To tolerate 3 percent error rates in components, massive amounts of computing hardware and processing time would be needed, partly because of the "overhead" involved in correcting errors. Fewer resources would be needed if component error rates can be reduced further, Knill’s calculations show.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>