Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers eclipse record for most distant massive object

02.03.2005


An international team of astronomers using the world’s largest X-ray and optical telescopes have spotted the most distant massive object ever detected, a cluster of galaxies 9 billion light years distant from Earth.



The cluster of galaxies is so far away that the light detected by the team is much older than the Earth itself. The galaxy cluster, if it is even still there, would be at least 11 billion years old now. "By capturing this ancient, 9-billion-year-old light, we have a snapshot of the universe at a youthful age of less than 5 billion years, which is about 1/3 of the present age," said project leader Christopher Mullis, a research fellow in the University of Michigan’s Department of Astronomy.

As exciting as it is to break a record, it’s also an important cosmological finding. "Just a few years ago, astronomers did not believe structures like this even existed at such an early time," Mullis said. This galaxy cluster, which is being seen as it appeared about 2 billion years after its formation, is well-organized and "mature," he said. Although it is very far back in time, it looks as if this structure had formed in a way that is consistent with more recent structures. "Even at this early stage in cosmic history, this appears already as a mature, fully assembled structure which implies that this is an old cluster in a young universe," said European Southern Observatory astronomer Piero Rosati, who collaborated on the study.


The record-breaking galaxy cluster was also a somewhat surprising find for the team, who were testing a new approach to hunting distant objects. "Basically we stepped up to the plate for our first time at bat with this new system, and we hit a home run," Mullis said.

Mullis and his colleagues started their search by combing through archives of old images from the European Space Agency’s orbiting X-ray observatory, XMM-Newton, looking for diffuse X-ray sources that had not been previously studied. Cluster galaxies shine brightly in optical light, but they also emit strong X-ray signals resulting from very hot gas that envelopes the cluster.

The record-breaking cluster initially turned up, small but distinct, off center in an image made by another team.

The X-ray image of the distant cluster is comprised of just 280 photons---individual parcels of light---collected over a 12.5-hour exposure. By comparison, on a sunny day the human eye is flooded by about 10 quadrillion photons per second.

With this distant cluster candidate and dozens of others culled from the X-ray archive, Mullis and his team then turned to one of the world’s largest optical telescopes, the European Southern Observatory’s Very Large Telescope, located in the Atacama Desert, Chile. They took a series of relatively quick exposures of the candidates with red and blue filters on the telescope.

What Mullis and his Italian and German collaborators were looking for at each of the candidate spots were very red galaxies, indicating light that has traveled for an extremely long time to reach Earth. "The redder the better," Mullis said. Almost immediately, they turned up this cluster of red objects that seemed to be beyond the previous distance record. "I spent a full day rechecking my data before I called any of the other scientists," Mullis said. "It appeared to be almost unbelievably distant."

Subsequent, more detailed measurements on 12 major galaxies in the cluster were used to confirm that they were equidistant from Earth at about 9 billion light years. The entire cluster is probably hundreds or even thousands of galaxies held together by gravity, Mullis said.

Collaborator Hans Bohringer of the Max Planck Institute for Extraterrestrial Physics in Garching, Germany said the discovery "encourages us to search for additional distant clusters using the same efficient techniques used to locate the present cluster."

Mullis and his team are going to broaden the search to find more super-distant galaxy clusters with this new approach. They also plan to go back and take longer optical and X-ray telescope exposures of the record-setting cluster to get a better sense of its features. "Finding it is one thing," Mullis said. "We also need to go back in there and maximize that return." With enough data on this and other super-distant massive objects, Mullis expects to find new answers to some fundamental questions of how the universe formed.

Mullis will be presenting this finding at an international astronomy conference in Hawaii focused on connecting galaxy clusters to the underlying physics of space time and gravity. The meeting is being organized by U-M physics professor Gus Evrard, and sponsored in part by the Michigan Center for Theoretical Physics. "It’s special to live in the era of human history when the terrain of the whole visible universe is being revealed," Evrard said.

A paper by Mullis and his team will also appear in an upcoming issue of The Astrophysical Journal.

Karl Leif Bates | EurekAlert!
Further information:
http://www.umich.edu

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>