Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spitzer Space Telescope finds bright infrared galaxies

02.03.2005


Cornell University-led team operating the Infrared Spectrograph (IRS), the largest of the three main instruments on NASA’s Spitzer Space Telescope, has discovered a mysterious population of distant and enormously powerful galaxies radiating in the infrared spectrum with many hundreds of times more power than our Milky Way galaxy. Their distance from Earth is about 11 billion light years, or 80 percent of the way back to the Big Bang.





Virtually everything about this new class of objects is educated speculation, the researchers say, since the galaxies are invisible to ground-based optical telescopes with the deepest reach into the universe. "We think we have an idea of what they are, but we are not necessarily correct," says Cornell senior research associate in astronomy Dan Weedman.

Among the more probable ideas are that these mysterious bodies are ultraluminous infrared galaxies, powered either by an active galactic nuclei (AGN) or by a starburst, a massive burst of star formation. AGNs are powered by the in-fall of matter to a massive black hole, while massive starbursts often are triggered by the collision of two or more galaxies. What makes the objects studied by the Spitzer team stand out is that previously known AGNs are "not nearly as powerful, far away, or as dust-enshrouded" as these bodies are, says Weedman.


The Cornell Spitzer team’s discovery is published in the March 1 issue of the Astrophysical Journal Letters (ApJL), published by the American Astronomical Society. The Spitzer telescope, which went into an Earth-trailing orbit around the sun in August 2003, is the last of NASA’s Great Observatories, the Hubble being the first. Spectra spread light out into its basic parts, like a prism turning sunlight into a rainbow. They contain the signatures, or "fingerprints," of molecules that contribute to an object’s light. This galaxy’s spectrum reveals the fingerprint for silicate dust (large dip at right), a planetary building block like sand, only smaller. This particular fingerprint is important because it helped astronomers determine how far away the galaxy lies, or more specifically, how much the galaxy’s light had stretched, or "redshifted," during its journey to Spitzer’s eyes. This galaxy was found to have a redshift of 1.95, which means that its light took about 11 billion years to get here. The silicate fingerprint is also significant because it implies that galaxies were ripe for planetary formation 11 billion years ago Ð back to a time when the universe was 3 billion years old. The universe is currently believed to be 13.5 billion years old. This is the furthest back in time that silicate dust has been detected around a galaxy. These data were taken by Spitzer’s infrared spectrograph in July, 2004. NASA/JPL-Caltech/Cornell Click on the image for a high-resolution version (3000 x 2400 pixels, 1351K) The IRS team used data obtained by the National Science Foundation’s telescopes at Kitt Peak National Observatory, for the National Optical Astronomy Observatory (NOAO) Deep Wide-Field Survey. The team also used a catalog of infrared sources obtained in a survey in early 2004 by another of the Spitzer telescope’s instruments, the Multiband Imaging Photometer for Spitzer (MIPS). From the thousands of MIPS sources in a three-degree square patch of the sky -- about one-fourth the size of the bowl of the Big Dipper -- in the constellation Boötes the Herdsman, the IRS team selected and observed 31 that are quite bright in the infrared but invisible in the NOAO survey.

"The NOAO Deep Wide-Field Survey is the best available optical survey for comparing to our data," Weedman says. "It would have been much more difficult to make this discovery without such a wide area of comparison. These NOAO data allowed us to compare the sky at infrared and optical wavelengths and find things that had never been seen before."

The Boötes area was chosen by the NOAO team because of the absence of obscuring dust in our galaxy, presenting a clear view of the distant sky. The presence of these mysterious, infrared, bright, but optically invisible, objects was first hinted at in 1983 in a paper by James Houck, Cornell’s Kenneth A. Wallace Professor of Astronomy and principal investigator for the IRS. Houck was interpreting data from another space probe he was involved with, the Infrared Astronomical Satellite (IRAS), the first astronomy mission devoted to searching the heavens for infrared sources. More than a decade later these strange objects were again recorded by the European Space Agency’s Infrared Space Observatory. "Spitzer is more than 100 times more sensitive than IRAS for detecting objects at infrared wavelengths," says Houck. "These celestial bodies are so far from our Milky Way galaxy that we detect them as they were when the universe was just 20 percent of its current age," says Sarah Higdon, a research associate in Cornell’s Department of Astronomy, who led the group that developed the software package for analyzing Spitzer data.

In addition to their incredible distance, these objects also are enshrouded by a great deal of dust, which Cornell astronomy research associate Jim Higdon describes as being "the size of smoke particles made of silicates."

Other authors of the ApJL paper are: from Cornell, Terry Herter and Vassilis Charmandaris; from the Spitzer Space Science Center, L. Armus, H.I. Teplitz and B.T. Soifer; from NOAO, M.J.I Brown (now at Princeton University), A. Dey and B.T. Jannuzi; from Steward Observatory, University of Arizona, E. Le Floc’h and M. Rieke; and from Leiden Observatory, Holland, Bernhard Brandl.

The IRS, the most sensitive infrared spectrograph to be sent into space, is a collaborative venture between Cornell and Ball Aerospace and funded by NASA through the Jet Propulsion Laboratory (JPL) and Ames Research Center. JPL manages the Spitzer Space Telescope for NASA. NOAO is operated by the Association of Universities for Research in Astronomy Inc., under a cooperative agreement with the National Science Foundation.

Reported and written for Cornell News Office by freelancer Larry Klaes.

Related World Wide Web sites: The following sites provide additional information on this news release. Some might not be part of the Cornell University community, and Cornell has no control over their content or availability.

David Brand | EurekAlert!
Further information:
http://www.cornell.edu
http://www.spitzer.caltech.edu/

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>