Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Consigned to Cern the last component of Cms solenoid

02.03.2005


It is the hugest superconducting solenoid in the world and it is able to generate a magnetic field 100.000 times stronger than the Earth’s one

The hugest superconducting solenoid ever built in the world is finally completed. It is formed by five huge modules connected each other and will generate a magnetic field of 4 Tesla, equal to 100.000 times the Earth magnetic field. This extraordinary system will be dedicated to Cms (Compact Muon Solenoid) experiment at Lhc accelerator at Cern. Cms magnet is the result of a large international collaboration among Italian Institute of Nuclear Physics, Cern, Commissariat pour l’Energie Atomic (Cea) in Saclay (France) the Eth-Z (Polytechnic of Zurich) and the best industries in this field in Italy, France, Switzerland, Germany, Russia and many other member countries of the collaboration. The consignment of the last module of Cms solenoid will take place officially during a ceremony at Cern, Tuesday, March 1.

Cms experiment will study the characteristics of particles produced in the collisions between proton beams moving into Lhc accelerator. The main aim of the experiment is identifying the Higgs boson, the most elusive particle of modern subnuclear physics. The Higgs boson, indeed, has not been directly observed yet. Although it is predicted by theoretical models, that assume its existence to explain why some particles own the essential characteristic named mass.



Cms will allow the study of different types of particles produced through proton collisions. Cms will separate them thanks to a very strong magnetic field that will deflect their tracks according to their electric charge and impulse. The five modules forming the solenoid will generate the magnetic field. Every module is 6 metres diameter, 2.5 metres length and 50 tonnes weight. Thanks to a sophisticated liquid Helium cooling system, modules will be kept to the low temperature of –269 C°, so that they become superconducting (superconductivity allows, without waste, circulation of huge currents that produce the powerful magnetic field). The whole solenoid will be contained in an enormous vacuum cylinder the will isolate it from the external environment. Finally a structure composed by 12.000 tonnes of iron will "bridle" the lines of the magnetic field that otherwise would be get lost causing disturbs. Cms will be an enormous system of 16 metres of diameter and 22 metres length: measures of a five level building!

"Italy has an essential role in Cms construction: Cms-Italy is indeed one of the main collaborations between high energy physicists in the world and counts among the others, 235 researchers, physicists and engineers belonging to 14 Infn sections and laboratories and to 13 Italian Universities. Italy has participated in the global planning of the system. Moreover the delicate phases of the winding of the conducting cable that form the modules and the realization of the refrigerating cylinders that contain them have been carried out in Italy thanks to the collaboration between Infn Section in Genoa and Ansaldo Superconductors industry. The same collaboration allowed to carry out other delicate phases, such as the final potting of the modules in epoxy resin through vacuum diving. This operation was necessary to fill with a solid matrix even the smallest interspaces. In this way it was possible to block the conducting cable and prevent even the smallest vibration, that could cause heat, modifying the very low temperatures necessary for the superconductivity" explains Guido Tonelli, Cms Italy national spokesman, professor of General Physics at Pisa University and collaborator of Infn.

The difficult and delicate work realized by physicists and engineers of Infn for the realization of the modules of Cms solenoid required the development of innovative technological solutions and a lot of precision. "In order to avoid imperfections in the conducting cable, new welding techniques have been carried out and proper equipment were invented to assure the perfect winding and the potting in epoxy resin of kilometres of conducting cable.

Moreover it was necessary to plan and to realize special equipments, able to guarantee mechanical precision equal to fractions of millimetres on dimensions of some metres. On the whole, the realization of the big solenoid was one of the main technological challenge of Cms: it took us about 10 years of work and an investment of about 80 millions of Euros. Superconductivity plays an always more important role in society: for instance all solenoids used for Nuclear Magnetic Resonance are superconducting. It is also essential that there are in Italy industrial top competences in this field. Infn was, with the Italian industry, among the forerunners for the development of this technology" remarks Pasquale Fabbricatore, manager of Infn of Genoa, and Italian spokesman of Cms-Solenoid Italy.

Even the transportation of the modules that form the solenoid of Cms from Genoa, where it was realized, to Geneva, was in a certain sense a delicate operation. The single huge modules were transported to Cern leaving from Genoa port and going up the Rhone up to Macon, in order to reduce the passage on road. The first of the five modules was consigned in February 2004. The fitting of Cms solenoid is foreseen by next summer, while the final test will take place by the end of the year.

Guido Tonelli | EurekAlert!
Further information:
http://www.pi.infn.it

More articles from Physics and Astronomy:

nachricht Transportable laser
23.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht New for three types of extreme-energy space particles: Theory shows unified origin
23.01.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>