Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrocarbons in the Horsehead mane

22.02.2005


Observing the edge of the famous Horsehead Nebula with the IRAM interferometer located on the Plateau de Bures (France), a team of French and Spanish astronomers discovered a large quantity of small hydrocarbon molecules. This is a surprise because the intense UV radiation illuminating the Nebula should destroy the small hydrocarbons near the edge. The astronomers suggest that these molecules might result from the fragmentation of giant molecules, called “polycyclic aromatic hydrocarbons” (PAHs).



More than 120 molecules have been observed in the interstellar medium, of which about twenty are small hydrocarbons. These hydrocarbons are an important component of the interstellar chemistry as they furnish a carbon skeleton needed to build more complex molecules. However, these small hydrocarbons are easily broken apart by the UV radiation from young stars. Therefore, astronomers try to understand how these molecules are regenerated in spite of their destruction by UV radiation.

In addition to these small hydrocarbons, giant molecules, called polycyclic aromatic hydrocarbons (PAHs), were detected in the early 1980’s, at infrared wavelengths. PAHs are aggregates made of tens to hundreds of mainly carbon and hydrogen atoms. Previous theoretical studies suggested that radiative fragmentation of the PAHs lead to small hydrocarbons. Jérôme Pety (IRAM, France) and his colleagues [1] have now provided one major step toward validating this theoretical hypothesis. They observed the famous Horsehead Nebula with the IRAM Interferometer (Plateau de Bures, France) [2], to search for hydrocarbons and to compare their location with that of PAHs detected a few years ago with the ISO satellite in the same region.


The Horsehead Nebula is one of the most famous and easily-recognizable shapes in the sky. In addition, for astronomers, its light-bathed silhouette is above all a fantastic interstellar chemistry laboratory where high density gas and stellar light interact. More precisely, the Horsehead appears as a dark patch against a bright region (named IC 434). It also undergoes strong ultraviolet radiation that mainly comes from the nearby star σ Orionis. Thanks to the high spatial resolution of the IRAM interferometer, the team was able to explore the edge of the nebula, “the horse mane”, where the gas density increases and the temperature and illumination decrease within a few hundredths of a light-year.

The team discovered three small hydrocarbons (C2H, C3H2, C4H) in the illuminated edge of the nebula. The abundance of these molecules is close to that measured inside interstellar dark clouds. The team was very surprised by the high abundance of C2H, C3H2, C4H in the Horsehead “mane”: these molecules should be destroyed by the intense UV radiation in the edge of the nebula.

Where do the hydrocarbons come from? In their article, Jérôme Pety and his colleagues compare the places where the hydrocarbons have been detected to the places where the ISO satellite detected PAHs. The correspondence between the hydrocarbons’ and the PAHs’ sites is very good and confirms the hypothesis that the hydrocarbons come from the fragmentation of PAHs. Under strong interstellar radiation, PAHs might be eroded and free a large number of small hydrocarbons. This mechanism would be more efficient in regions similar to the edge of the Horsehead Nebula, named “photo-dissociation regions”, in which UV radiation is stronger. This scenario now has to be confirmed by laboratory experiments, such as the experimental set-up PIRENEA in Toulouse (France) [3], for the study of the chemical reactions in the interstellar medium.

Jennifer Martin | alfa
Further information:
http://www.edpsciences.org

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>