Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrocarbons in the Horsehead mane

22.02.2005


Observing the edge of the famous Horsehead Nebula with the IRAM interferometer located on the Plateau de Bures (France), a team of French and Spanish astronomers discovered a large quantity of small hydrocarbon molecules. This is a surprise because the intense UV radiation illuminating the Nebula should destroy the small hydrocarbons near the edge. The astronomers suggest that these molecules might result from the fragmentation of giant molecules, called “polycyclic aromatic hydrocarbons” (PAHs).



More than 120 molecules have been observed in the interstellar medium, of which about twenty are small hydrocarbons. These hydrocarbons are an important component of the interstellar chemistry as they furnish a carbon skeleton needed to build more complex molecules. However, these small hydrocarbons are easily broken apart by the UV radiation from young stars. Therefore, astronomers try to understand how these molecules are regenerated in spite of their destruction by UV radiation.

In addition to these small hydrocarbons, giant molecules, called polycyclic aromatic hydrocarbons (PAHs), were detected in the early 1980’s, at infrared wavelengths. PAHs are aggregates made of tens to hundreds of mainly carbon and hydrogen atoms. Previous theoretical studies suggested that radiative fragmentation of the PAHs lead to small hydrocarbons. Jérôme Pety (IRAM, France) and his colleagues [1] have now provided one major step toward validating this theoretical hypothesis. They observed the famous Horsehead Nebula with the IRAM Interferometer (Plateau de Bures, France) [2], to search for hydrocarbons and to compare their location with that of PAHs detected a few years ago with the ISO satellite in the same region.


The Horsehead Nebula is one of the most famous and easily-recognizable shapes in the sky. In addition, for astronomers, its light-bathed silhouette is above all a fantastic interstellar chemistry laboratory where high density gas and stellar light interact. More precisely, the Horsehead appears as a dark patch against a bright region (named IC 434). It also undergoes strong ultraviolet radiation that mainly comes from the nearby star σ Orionis. Thanks to the high spatial resolution of the IRAM interferometer, the team was able to explore the edge of the nebula, “the horse mane”, where the gas density increases and the temperature and illumination decrease within a few hundredths of a light-year.

The team discovered three small hydrocarbons (C2H, C3H2, C4H) in the illuminated edge of the nebula. The abundance of these molecules is close to that measured inside interstellar dark clouds. The team was very surprised by the high abundance of C2H, C3H2, C4H in the Horsehead “mane”: these molecules should be destroyed by the intense UV radiation in the edge of the nebula.

Where do the hydrocarbons come from? In their article, Jérôme Pety and his colleagues compare the places where the hydrocarbons have been detected to the places where the ISO satellite detected PAHs. The correspondence between the hydrocarbons’ and the PAHs’ sites is very good and confirms the hypothesis that the hydrocarbons come from the fragmentation of PAHs. Under strong interstellar radiation, PAHs might be eroded and free a large number of small hydrocarbons. This mechanism would be more efficient in regions similar to the edge of the Horsehead Nebula, named “photo-dissociation regions”, in which UV radiation is stronger. This scenario now has to be confirmed by laboratory experiments, such as the experimental set-up PIRENEA in Toulouse (France) [3], for the study of the chemical reactions in the interstellar medium.

Jennifer Martin | alfa
Further information:
http://www.edpsciences.org

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>