Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Successful test of single molecule switch opens the door to biomolecular electronics


A team of scientists led by biophysicist Stuart Lindsay from the Biodesign Institute at Arizona State University have created the first reproducible single molecule negative differential resistor and in the process have developed a groundbreaking experimental technique that provides a "roadmap" for designing single molecule devices based on biochemistry.

The findings will be discussed in a presentation by Lindsay on February 18 at the American Association for the Advancement of Science annual meeting in Washington, D.C. in an 8:30 a.m. session entitled "Frontiers in Bioinspired Materials and Nanosystems." The findings will also be reported in a forthcoming edition of the American Chemical Society’s journal Nano Letters.

Lindsay’s team reports achieving an experimental result that physicists have been trying to detect for a long time - negative differential resistance in a single molecule attached to electrodes.

The specifically designed molecule, a hepta-aniline oglimer, belongs to a group of molecules that biochemists have long believed to be capable of being molecular switches, but that have failed to exhibit those properties in conductance experiments. The team solved the problem by developing a technique where the molecule could be tested in an electrolyte solution, a condition that past experiments have never attempted because of the problem of interaction between the solution and the electrodes. "Almost everything we know about charge transfer in molecules is based on measurements made with the molecules suspended in solution," Lindsay said. "Chemists have understood for a while that the solvent itself plays a major part in charge transfer processes - the ions in the solution are necessary to make the process happen. "Yet almost every ’molecular electronic’ measurement made to date has been made in a vacuum or other conditions that suppress solvent-mediated events. It’s no wonder that we could not get reliable results," he said.

Though numerous molecules have been identified as targets for future use as nano-scale electronic components such as switches, photoelectric devices and hydrogen generators, some major technical problems have stymied further research. The first of these has been the difficulty in making reliable connections with single molecules in order to test their electronic behavior. Recently, this problem this problem may have been solved by using the scanning probe microscope to make and measure single molecule contacts with molecules designed to bond at their ends with a surface and the probe tip.

The second problem, however, has been that these connected molecules have failed to exhibit the predicted electrical properties when tested without a conducting solution. Physicists attempting these measurements avoided using electrolyte solutions because the applied current would leak into the surrounding solution. Lindsay and his team solved this problem by applying an insulating coating to the entire probe, except its very tip, so there was minimal electrical contact with the solution.

According to Lindsay, the solution is required to make the process work because, without it, the initial insulating property of the molecule prevents the first electron from ever jumping on to the molecule, a kind of catch-22. Ions in the solution "jiggle" the molecule enough to bring about an unusual configuration of the molecule that does allow the electrons from the electrodes to jump on to the molecule, a process first pointed out by Rudy Marcus of Cal Tech (for which he was awarded the 1992 Nobel prize in chemistry).

The oligoaniline molecule the team tested has three electrical states, a neutral state where it is an insulator, a second state where electrons are removed to oxidize the molecule and make it a conductor, and a third state where more electrons are removed and turn it back into an insulator. Measuring the connected molecule in a sulfuric acid solution, the team was able to make reproducible measurements showing all three states by measuring the current through it as electrons were removed by another electrode, turning it from an insulator to a strong conductor and then back into an insulator again.

Given the measured electrical properties of the oligoaniline, Lindsay notes that if the molecule is maintained at its highly conductive state (at low voltage) and then the voltage applied to the molecule is increased, the connections to the molecule will, themselves, rip electrons out of the molecule, pushing it back into its insulating state. This decrease of current with increasing voltage is called "negative differential resistance" (NDR) and it allows a useful device to be made with just two electrodes, not the three originally used. "NDR is the basis for memories, switches and logic elements," said Lindsay. "It has been observed in molecules before but never in controlled conditions, never at low voltages, and not in a predictable way."

Lindsay stress that the main value of the finding is not so in having found a molecule that could be developed into a working electrical switch, as it is in discovering some critical design parameters that should make possible future successful research in designing molecular devices. "We have a working rational roadmap now for how to do this and we’re already hard at work applying it to a wide variety of potentially exciting applications," he said.

Authors on the Nano Letters paper are Lindsay, who is also the Nadine and Edward Carson Professor of Physics and Chemistry and Biochemistry at ASU; ASU physicists Fan Chen, and Jin He; and Columbia University chemists Colin Nuckolls, Tucker Roberts and Jennifer E. Klare.

James Hathaway | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>