Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful test of single molecule switch opens the door to biomolecular electronics

21.02.2005


A team of scientists led by biophysicist Stuart Lindsay from the Biodesign Institute at Arizona State University have created the first reproducible single molecule negative differential resistor and in the process have developed a groundbreaking experimental technique that provides a "roadmap" for designing single molecule devices based on biochemistry.



The findings will be discussed in a presentation by Lindsay on February 18 at the American Association for the Advancement of Science annual meeting in Washington, D.C. in an 8:30 a.m. session entitled "Frontiers in Bioinspired Materials and Nanosystems." The findings will also be reported in a forthcoming edition of the American Chemical Society’s journal Nano Letters.

Lindsay’s team reports achieving an experimental result that physicists have been trying to detect for a long time - negative differential resistance in a single molecule attached to electrodes.


The specifically designed molecule, a hepta-aniline oglimer, belongs to a group of molecules that biochemists have long believed to be capable of being molecular switches, but that have failed to exhibit those properties in conductance experiments. The team solved the problem by developing a technique where the molecule could be tested in an electrolyte solution, a condition that past experiments have never attempted because of the problem of interaction between the solution and the electrodes. "Almost everything we know about charge transfer in molecules is based on measurements made with the molecules suspended in solution," Lindsay said. "Chemists have understood for a while that the solvent itself plays a major part in charge transfer processes - the ions in the solution are necessary to make the process happen. "Yet almost every ’molecular electronic’ measurement made to date has been made in a vacuum or other conditions that suppress solvent-mediated events. It’s no wonder that we could not get reliable results," he said.

Though numerous molecules have been identified as targets for future use as nano-scale electronic components such as switches, photoelectric devices and hydrogen generators, some major technical problems have stymied further research. The first of these has been the difficulty in making reliable connections with single molecules in order to test their electronic behavior. Recently, this problem this problem may have been solved by using the scanning probe microscope to make and measure single molecule contacts with molecules designed to bond at their ends with a surface and the probe tip.

The second problem, however, has been that these connected molecules have failed to exhibit the predicted electrical properties when tested without a conducting solution. Physicists attempting these measurements avoided using electrolyte solutions because the applied current would leak into the surrounding solution. Lindsay and his team solved this problem by applying an insulating coating to the entire probe, except its very tip, so there was minimal electrical contact with the solution.

According to Lindsay, the solution is required to make the process work because, without it, the initial insulating property of the molecule prevents the first electron from ever jumping on to the molecule, a kind of catch-22. Ions in the solution "jiggle" the molecule enough to bring about an unusual configuration of the molecule that does allow the electrons from the electrodes to jump on to the molecule, a process first pointed out by Rudy Marcus of Cal Tech (for which he was awarded the 1992 Nobel prize in chemistry).

The oligoaniline molecule the team tested has three electrical states, a neutral state where it is an insulator, a second state where electrons are removed to oxidize the molecule and make it a conductor, and a third state where more electrons are removed and turn it back into an insulator. Measuring the connected molecule in a sulfuric acid solution, the team was able to make reproducible measurements showing all three states by measuring the current through it as electrons were removed by another electrode, turning it from an insulator to a strong conductor and then back into an insulator again.

Given the measured electrical properties of the oligoaniline, Lindsay notes that if the molecule is maintained at its highly conductive state (at low voltage) and then the voltage applied to the molecule is increased, the connections to the molecule will, themselves, rip electrons out of the molecule, pushing it back into its insulating state. This decrease of current with increasing voltage is called "negative differential resistance" (NDR) and it allows a useful device to be made with just two electrodes, not the three originally used. "NDR is the basis for memories, switches and logic elements," said Lindsay. "It has been observed in molecules before but never in controlled conditions, never at low voltages, and not in a predictable way."

Lindsay stress that the main value of the finding is not so in having found a molecule that could be developed into a working electrical switch, as it is in discovering some critical design parameters that should make possible future successful research in designing molecular devices. "We have a working rational roadmap now for how to do this and we’re already hard at work applying it to a wide variety of potentially exciting applications," he said.

Authors on the Nano Letters paper are Lindsay, who is also the Nadine and Edward Carson Professor of Physics and Chemistry and Biochemistry at ASU; ASU physicists Fan Chen, and Jin He; and Columbia University chemists Colin Nuckolls, Tucker Roberts and Jennifer E. Klare.

James Hathaway | EurekAlert!
Further information:
http://www.asu.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>