Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers measure mass of smallest black hole in a galactic nucleus

21.02.2005


A group led by astronomers from Ohio State University and the Technion-Israel Institute of Technology have measured the mass of a unique black hole, and determined that it is the smallest found so far.



Early results indicate that the black hole weighs in at less than a million times the mass of our sun -– which would make it as much as 100 times smaller than others of its type. To get their measurement, astronomers used NASA’s Hubble Space Telescope and a technique similar to Doppler radar -- the method that meteorologists use to track weather systems. The black hole lies 14 million light-years away, in the center of the galaxy NGC 4395. One light-year is the distance light travels in one year -- approximately six trillion miles.

Astronomers consider NGC 4395 to be an “active galaxy,” one with a very bright center, or nucleus. Current theory holds that black holes may literally be consuming active galactic nuclei (AGNs). Black holes in AGNs are supposed to be very massive.


NGC 4395 appears to be special, because the black hole in the center of the galaxy is much smaller than those found in other active galaxies, explained Ari Laor, professor of astronomy at the Technion, in Haifa, Israel, and Brad Peterson, professor of astronomy at Ohio State. While astronomers have found much evidence of black holes that are larger than a million solar masses or smaller than a few tens of solar masses, they haven’t found as many midsize black holes -- ones on the scale of hundreds or thousands of solar masses.

Black holes such as the one in NGC 4395 provide a step in closing that gap.

Laor and Peterson and their colleagues used the Doppler radar-like technique to track the movement of gas around the center of NGC 4395. Whereas radar bounces a radio frequency signal off of an object, the astronomers observed light signals that naturally emanated from the center of the galaxy, and timed how long those signals took to reach the orbiting gas.

The method is called reverberation mapping, and Peterson’s team is among a small number of groups who are developing it as a reliable means of measuring black hole masses. The method works because gas orbits faster around massive black holes than it does around smaller ones. Peterson reported the early results Saturday at the meeting of the American Association for the Advancement of Science in Washington, DC.

Two of the team members -- Luis Ho of the Observatories of the Carnegie Institution of Washington, and Alex Fillippenko of the University of California, Berkeley -- were the first to suspect that the black hole mass was very small. Filippenko and Wallace L.W. Sargent of the California Institute of Technology first discovered the black hole in 1989. This is the first time astronomers have been able to measure the mass of the black hole in NGC 4395, and confirm that it is indeed smaller than others of its kind. Peterson and Laor emphasized that the results are very preliminary, but the black hole seems to be at least a hundred times smaller than any other black hole ever detected inside an AGN.

The astronomers want to refine that estimate before they address the next most logical question: why is the black hole so small? “Is it the runt of the litter, or did it just happen to form under special circumstances? We don’t know yet,” Peterson said.

NGC 4395 doesn’t appear to have a dense spherical nucleus, called a galactic bulge, at its center; it could be that the black hole “ate” all the stars in the bulge, and doesn’t have any more food within reach. That would keep the black hole from growing.

Team members are most interested in what the black hole measurement can tell astronomers about AGNs in general. Any new information could help astronomers better understand the role that black holes play in making galaxies like our own form and evolve. To that end, the team is also studying related data from NASA’s Chandra X-ray Observatory and ground-based telescopes.

“It’s these extreme types of objects that really allow you to test your theories,” Peterson said.

Brad Peterson | EurekAlert!
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>