Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super-heavy nuclei take shape in ’extreme’ new theories

21.02.2005


Advanced computational methods and supporting experiments, including work performed at the Department of Energy’s Oak Ridge National Laboratory, are giving scientists a better understanding of the nature and stability of superheavy nuclei and the heaviest elements that lie beyond the borders of the periodic table.



Nature magazine on Thursday published a review article that describes collaborative work by researchers at Oak Ridge National Laboratory and the University of Tennessee and researchers at universities in Poland and Belgium. The authors describe the behavior of super-heavy nuclei -- those chock full of protons and neutrons to the point that they tax the physical forces that hold them together. "Predicting the stabilities of extremely heavy nuclei has been a long-term goal of nuclear scientists. This research represents the very best we can do at predicting the structure of these species," said Witold Nazarewicz, a researcher in ORNL’s Physics Division and UT’s Department of Physics and Astronomy.

The paper describes how the protons and neutrons of extremely heavy nuclei arrange into shapes that can be oblong or flat. That shape can help determine the stability or life of the nucleus, which is, in turn, a factor in determining if the atomic species can even exist or be synthetically created. Because of strong electrostatic repulsion, some of these superheavy nuclei may have extremely short lifetimes. "A typical lifetime of a nucleus is in the extremely heavy range of a millisecond," said Nazarewicz.


But in some cases, certain isotopes may be much more stable, or long-lived, and this stability may depend on the nuclear shape. Experiments performed at GSI in Germany, RIKEN in Japan, in Dubna, Russia, and elsewhere have bolstered theories that the lives of nuclei become longer as certain configurations of protons and neutrons are achieved. Computationally intense theoretical modeling indicates that a large difference in the shapes of a "parent" nucleus, which decays by emitting an alpha particle, and that of its "daughter" isotope will hinder the rate of decay to that daughter. "It takes time for a nucleus to decay from a flat, oblate shape to a well-deformed elongated shape. These protons and neutrons are rearranging themselves, and this shape change causes difficulty," said Nazarewicz.

Some experiments indicate that the addition of neutrons to a nucleus can extend the life of an isotope of a superheavy element -- for instance the as-yet unnamed element 112 -- from a fraction of a second to more than 30 seconds. In terms of existence for extremely heavy nuclei, a half-minute is an eternity.

Nuclei in the particularly well-bound isotopes find arrangements that physicists regard as "magic." Such nuclei are reminiscent of noble gases -- for instance, helium, argon and neon -- which because of their closed electron shells are so stable and unreactive that they are known as inert gases. Nuclei also can have closed shells of protons and neutrons. Lead-208 is the heaviest "doubly magic" nucleus with closed shells of 82 protons and 126 neutrons. "We do not really know what is the next doubly magic nucleus beyond lead-208" Nazarewicz said.

Theorists like Nazarewicz and his Nature co-authors, the late S. Cwiok of the Warsaw University of Technology, Poland, and P.-H. Heenen of the Free University of Brussells, Belgium, believe that in the extremely heavy regions, the interplay of nuclear shapes and proton and neutron arrangements eventually will approach relatively stable, "near-magic" states. "These theories are supported by large-scale, state-of-the-art calculations. At the same time, lab experimenters are trying to understand the mechanisms of nuclear collisions. Experiments with beams of radioactive neutron-rich nuclei such as doubly magic tin-132 may teach us how to pump more neutrons into the nuclei of these super-heavy elements," said Nazarewicz, who is scientific director of ORNL’s Holifield Radioactive Ion Beam Facility.

The work was funded in part by the Office of Nuclear Physics in DOE’s Office of Science and by the National Nuclear Security Administration.

Oak Ridge National Laboratory is a multiprogram laboratory managed for the Department of Energy by UT-Battelle.

Bill Cabage | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>